首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Double perovskite, (Sr1−xNdx)2FeMoO6, was doped with electrons through partial substitution of divalent Sr by trivalent Nd (0≤x≤0.2). The Fe valence and the degree of B-site order were probed by 57Fe Mössbauer spectroscopy. Replacing Sr by Nd increased the fraction of Fe and Mo atoms occupying wrong sites, i.e. antisite disorder. It had very little effect on the Fe valence: a small but visible increase in the isomer shift was seen for the mixed-valent FeII/III atoms occupying the right site indicating a slight movement towards divalency of these atoms, which was more than counterbalanced by the increase in the fraction of antisite Fe atoms with III valence state. It is therefore argued that the bulk of the electron doping is received by antisite Mo atoms, which - being surrounded by six MoV/VI atoms-prefer the lower IV/V valence state. Thus under Nd substitution, the charge-neutrality requirement inflicts a lattice disorder such that low - valent MoIV/V can exist.  相似文献   

2.
Core/shell nanoparticles consisting of a magnetic core of zinc-substituted manganese ferrite (Mn0.4Zn0.6Fe2O4) and a shell of silica (SiO2) are prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) as a precursor material for silica and salts of iron, manganese and zinc as the precursor of the ferrite. Three weight percentages of the shell materials of SiO2 are used to prepare the coated nanoparticles. The X-ray diffractograms (XRD) of the coated and uncoated magnetic nanoparticles confirmed that the magnetic nanoparticles are in their mixed spinel phase in an amorphous matrix of silica. Particles sizes of the samples annealed at different temperatures are estimated from the width of the (3 1 1) line of the XRD pattern using the Debye-Sherrer equation. The information regarding the crystallographic structure together with the particles sizes extracted from the high-resolution transmission electron microscopy (HRTEM) of a few selected samples are in agreement with those obtained from the XRD. HRTEM observations revealed that particles are coated with silica. The calculated thickness is in agreement with that obtained from the HRTEM pictures. Hysteresis loops observed in the temperature range 300 down to 5 K and Mössbauer spectra at room temperature indicate superparamagnetic relaxation of the nanoparticles.  相似文献   

3.
The magnetic and electric hyperfine interactions of the probe nucleus 119Sn on the Ga site of the ferromagnetic rare-earth (R) gallium compounds RGa (R=Pr–Er) have been investigated by Mössbauer spectroscopy technique. For all of the compounds, the directions of the magnetic moments of the R3+ ions have been determined as a function of temperature in the range from 5 K to TC. For NdGa, SmGa, HoGa, and ErGa compounds, the magnetic reorientation transitions due to the competition between the exchange interaction and the interaction with crystal field have been investigated. At high temperatures, when the electric interaction dominates, the orientation of the magnetic moments is unambiguously determined by the sign of the quadrupole moment of 4f shell of the R3+ ion. With decreasing temperature, the magnetic moments rotate gradually from the bc-plane toward the crystallographic a-axis. In the temperature range 5 K?T<100 K, the ferromagnetic structure of the GdGa compound is noncollinear. At 5 K the magnetic moments of the Gd3+ ions point in two distinct directions with respect to the crystallographic a  -axis (θ1≈30°θ130° and θ2≈60°θ260°).  相似文献   

4.
The magnetic hyperfine fields for 119Sn impurity atoms, localized in Ga sites of ferromagnetic intermetallic compounds RGa (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm), were measured by the Mössbauer spectroscopy technique. At T=5 K, the hyperfine field value (Bhf) varies from 3.3 T in TmGa to 28.0 T in GdGa. Huge deviation from the proportionality between Bhf and the projection of the R3+ ion spin (Sz=(g−1)J) was found. As the atomic number of the R element increases, the Bhf/Sz ratio drastically decreases from 12.6 T for PrGa to 3.3 T for TmGa. This unexpected result can be explained by the strong dependency of Bhf value on the relationship between the Sn-R atomic separation (Rnn) and the radius of the magnetic 4f shell (R4f). In the framework of this concept, the available experimental data for Sn atom in the rare-earth compounds with non-magnetic sp elements were considered. The data may be described by the universal dependency on the single parameter, λ=Rnn/R4f.  相似文献   

5.
Magnetic properties of four sigma-phase Fe100−xVx samples with 34.4?x?55.1 were investigated by Mössbauer spectroscopy and magnetic measurements in the temperature interval 4.2-300 K. Four magnetic quantities, viz. hyperfine field, Curie temperature, magnetic moment and susceptibility, were determined. The sample containing 34.4 at% V was revealed to exhibit the largest values found up to now for the sigma-phase for average hyperfine field, 〈B〉=12.1 T, average magnetic moment per Fe atom, 〈μ〉=0.89 μB, and Curie temperature, TC=315.3 K. The quantities were shown to be strongly correlated with each other. In particular, TC is linearly correlated with 〈μ〉 with a slope of 406.5 K/μB, as well as 〈B〉 is so correlated with 〈μ〉, yielding 14.3 T/μB for the hyperfine coupling constant.  相似文献   

6.
The ferromagnetic-to-antiferromagnetic transition in the hexagonal (Hf1−xTix)Fe2 (0?x?1) intermetallic compounds has been investigated by 57Fe Mössbauer spectroscopy. At 10 K, the transition occurs within rather narrow concentration limits, around x=0.55–0.65. We found that the key factor governing the unexpected quick change of the magnetic structure is the magnetic frustration of the Fe(2a) sites. The magnetic frustration is caused by the noncollinearity of the Fe(6h) magnetic sublattice. The noncollinearity arises from the rotation of the magnetic moments due to the competition between the ferromagnetic exchange interactions and the antiferromagnetic Fe(6h)–Ti–Fe(6h) interaction. In the compounds with x=0.4–0.6, the temperature transitions to the antiferromagnetic state are observed. As an example, the Hf0.4Ti0.6Fe2 compound is completely antiferromagnetic above 200 K.  相似文献   

7.
The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M(H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field (HE=5590 kOe), anisotropy field (HA=0.5 kOe) and Dzyaloshinsky–Moriya antisymmetric field (HD=149 kOe) are in good agreement with previous reports on this system.  相似文献   

8.
The 57Fe Mössbauer effect measurements were made for the L10 ordered Fe-Pt alloys with 39-62 at% Pt and the effect of local atomic environment on the hyperfine structure was investigated. Furthermore, the thermal stability of magnetic order was investigated for the alloys with high Pt concentration. From the analyses of the observed Mössbauer spectra, we found that dipole-field-like anisotropic transferred hyperfine fields are mainly responsible for the large difference in hyperfine field between Fe-site and Pt-site in the Fe-rich alloys. In the Pt-rich region far from stoichiometry, the existence of many Fe-sites occupied by excess Pt atoms causes a distribution of exchange fields. Therefore, the iron atoms in different local environments may have their several hyperfine fields with different temperature dependence. The anomalous temperature dependence of the averaged hyperfine field and line broadening observed for the 61, 62 at% Pt alloys can be understood from the co-existence of various sub-spectra with different temperature dependence. As a result, the thermal stability of magnetic order is largely reduced as the Pt concentration exceeds 60 at%.  相似文献   

9.
CoFe2O4 ferrite nanoparticles were prepared by a modified chemical coprecipitation route. Structural and magnetic properties were systematically investigated. X-ray diffraction results showed that the sample was in single phase with the space group . The results of field-emission scanning electronic microscopy showed that the grains appeared spherical with diameters ranging from 20 to 30 nm. The composition determined by energy-dispersive spectroscopy was stoichiometry of CoFe2O4. The Curie temperature in the process of increasing temperature was slightly higher than that in the process of decreasing temperature. This can be understood by the fact that heating changed Co2+ ion redistribution in tetrahedral and in octahedral sites. The coercivity of the synthesized CoFe2O4 samples was lower than the theoretical values, which could be explained by the mono-domain structure and a transformation from ferrimagnetic to superparamagnetic state.  相似文献   

10.
La0.8Sr0.2Co1−xFexO3 (x=0.15, 0.2, 0.3) samples were studied by means of AC magnetic susceptibility, magnetization, magnetoresistance and 57Fe Mössbauer spectrometry. Iron was found to take on a high spin 3d5−α electronic state in each of the samples, where α refers to a partly delocalized 3d electron. The compounds were found to exhibit a spin-cluster glass transition with a common transition temperature of ∼53 K. The spin-cluster glass transition is visualized in the 57Fe Mössbauer spectra as the slowing down of magnetic relaxation below ∼70 K, thereby showing that iron takes part in the formation of the glassy magnetic phase. The paramagnetic-like phase found at higher temperatures is identified below Tc≈195 K as being composed of weakly interacting, magnetically ordered nanosized clusters of magnetic ions in part with a magnetic moment oriented opposite to the net magnetic moment of the cluster. For each of the samples a considerable low-temperature negative magnetoresistance was found, whose magnitude in the studied range decreases with increasing iron concentration. The observed results obtained on the present compounds are qualitatively explained assuming that the absolute strengths of magnetic exchange interactions are subject to the relation ∣JCo–Co∣<∣JFe–Co∣<∣JFe–Fe∣.  相似文献   

11.
The time-differential perturbed angular correlations technique (TDPAC) has been employed for measuring the parameters of hyperfine interactions in earlier known RAl3 compounds, synthesized at high pressure (8 GPa) and high temperature, where R = La, Ce, Sm, Gd, Tb, Dy, Ho, Er, Yb and Lu. The 111Cd(111In) radioactive atom was used as a probe nucleus. The X-ray method has revealed that with the increase in the atomic number of a rare-earth element R, the obtained RAl3 high-pressure phases crystallize, respectively, into orthorhombic, hexagonal and cubic structures. It has been found that in the compounds containing R=La, Ce, Sm and Gd, a deviation from earlier known structural types and the formation of new ones is observed, which is associated with the change of the stoichiometric composition of the said compounds. The results of the PAC measurements have confirmed the deviation from the predetermined stoichiometric composition 1R:3Al for the compounds LaAl3, CeAl3, SmAl3 and GdAl3 and have verified the RAl3 stoichiometric structure for the other high-pressure phases obtained in this work.  相似文献   

12.
Fe3O4 nanowire arrays with different diameters of D=50, 100, 150 and 200 nm were prepared in anodic aluminum oxide (AAO) templates by an electrodeposition method followed by heat-treating processes. A vibrating sample magnetometer (VSM) and a Quantum Design SQUID MPMS magnetometer were used to investigate the magnetic properties. At room temperature the nanowire arrays change from superparamagnetism to ferromagnetism as the diameter increases from 50 to 200 nm. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements show that the blocking temperature TB increases with the diameter of nanowire. The ZFC curves of D=50 nm nanowire arrays under different applied fields (H) were measured and a power relationship between TB and H were found. The temperature dependence of coercivity below TB was also investigated. Mössbauer spectra and micromagnetic simulation were used to study the micro-magnetic structure of nanowire arrays and the static distribution of magnetic moments of D=200 nm nanowire arrays was investigated. The unique magnetic behaviors were interpreted by the competition of the demagnetization energy of quasi-one-dimensional nanostructures and the magnetocrystalline anisotropy energy of particles in nanowires.  相似文献   

13.
We report the effect of replacing Cu by Pd in RCu5 (R=Pr, Nd, Sm and Eu). The parent RCu5 compounds crystallize in the hexagonal CaCu5-type structure. The hexagonal symmetry is retained in PrCu4Pd and EuCu5−xPdx (x=1 and 2) but the crystal structure changes to cubic AuBe5-type in PrCu3Pd2, NdCu5−xPdx (x=1 and 2) and SmCu4Pd. Substitution with Pd leads to lattice expansion and modifies the magnetic behavior. While PrCu5 is known to be a van-Vleck paramagnet with a singlet ground state, PrCu4Pd and PrCu3Pd2 show ferromagnetic-like behavior at low temperatures. SmCu4Pd orders ferromagnetically near 28 K in contrast to the antiferromagnetic nature of the parent SmCu5. The divalent nature of the Eu ions in EuCu5 is retained in the ternary alloys, but the Curie temperature is reduced from 57 to 24.5 and 14.5 K in EuCu4Pd and EuCu3Pd2, respectively, inferred from the location of peak in the heat capacity of these two compounds. The magnetic hyperfine field at the Eu nucleus measured with 151Eu Mössbauer spectroscopy in the ternary Eu-alloys is comparable to that in EuCu5. The magnetic behavior of NdCu4Pd is similar to that reported in NdCu5. The zero-field-cooled, low-field magnetization of NdCu3Pd2 shows a region of diamagnetic behavior roughly between 21 and 4 K, but the field-cooled response is positive.  相似文献   

14.
Co0.8Fe2.2O4 ferrite thin films have been prepared on Si(0 0 1) substrates by the chemical solution deposition. Structural characteristics indicate all films are single phase with spinel structure and the space group and the mean grain size increases from 8 to 30 nm with the increase of annealing temperature. The magnetic properties of Co0.8Fe2.2O4 thin films are highly dependent on annealing temperature. The sample annealed at 800 °C possesses high saturation magnetization, moderate coercivity and squareness ratio, making it a promising application candidate in high-density record and magneto-optical materials.  相似文献   

15.
The linear and nonlinear low field AC susceptibilities of Zn0.75Co0.25Fe0.5Cr1.5O4 show peaks due to non-critical contributions, which mask the peak due to spin glass ordering. They extend into the region of temperatures in which Mössbauer spectra do not show any magnetic component. When a DC field of 200 Oe suppresses the non-critical contributions, peak due to spin glass ordering is clearly visible. The spin glass ordering is thus shown to be a thermodynamic transition. The critical exponent is found to fall within the range found using other spin glasses. Mössbauer spectra in zero fields provide TSG, which agrees with the peak temperature of AC susceptibilities in the absence of non-critical contributions. 〈SZ〉 determined using Mössbauer spectra does not show any anomaly. In the presence of a field of 5 T, the spectra show SG ordering at 4.2 K, which converts into ferrimagnetic ordering at higher temperatures.  相似文献   

16.
The sample of FeSc2S4 was prepared by solid reaction method. The crystallographic structure and the magnetic properties of the fabricated compound were investigated by X-ray, and superconducting quantum interference device (SQUID) magnetometer and Mössbauer spectroscopy. The polycrystalline FeSc2S4 confirmed the normal cubic spinel structure (space group Fd3m). The lattice constants a0 and anion parameter u are 10.519 Å and 0.255, respectively. The Mössbauer spectroscopy has been studied for the FeSc2S4 at various temperatures, ranging from 4.2 K to room temperature. The spectra consist of two doublets at 4.2 K while a single line at room temperature. It is noticeable that the Mössbauer spectra of two doublet patterns with large electric quadrupole splitting (ΔEQ) remain over the Néel temperature. Those are interpreted as a result of large electric quadrupole interaction compared to magnetic dipole interaction. The magnetic susceptibility measurements were performed with a SQUID magnetometer for temperatures 2<T<320 K, in external fields up to 5 kOe. Magnetic behavior shows antiferromagnetic behavior and the magnetic superexchange interactions between the Fe ions are weakly antiferromagnetic. The paramagnetic susceptibilities follow Curie–Weiss (CW) law with CW temperature ΘCW=−100 K, and frustration parameter f=−ΘCW/TN is of the order of 1000. We conclude that two sublattices are coupled antiferromagnetically, leading to strong frustration effects.  相似文献   

17.
Rather old preparation of the compounds ThCo2Ge2 and ThCo2Si2 and their magnetic study in the temperature range 100–570 K, published by Omejec and Ban [Z. Anorg. Allg. Chem. 380 (1971) 111], indicated that both compounds ordered ferrromagnetically below 100 K. In order to verify the old data, polycrystalline samples of ThCo2Ge2 and ThCo2Si2 have been prepared by arc melting and subsequent annealing, and studied by X-ray diffraction at room temperature (RT), by superconducting quantum interference device (SQUID)-magnetization and AC-susceptibility measurements at 2–320 K, and by dc-magnetization measurements in variable magnetic fields up to 120 kOe at 5, 80, and 283 K. The magnetic measurements confirm the ferromagnetic ordering in both compounds, but with totally different Curie temperatures: ≈120(20) K for ThCo2Ge2 and above 320 K for ThCo2Si2. The paramagnetic values of ThCo2Ge2 and the ordering of both compounds are discussed and compared with the old results of Omejec and Ban.  相似文献   

18.
The present article reports studies on structural and magnetic properties of nanostructured Fe/MnO2 materials prepared by mechanosynthesis method, with Fe to MnO2 ratios of 20/80, 50/50 and 60/40. X-ray diffraction patterns indicate that the milled materials have crystalline grain size in the nanoscale region. Mössbauer spectra of the milled materials suggest the presence of two Fe phases for each sample: a nanocrystalline αα-Fe phase with a high degree of disorder/defects and small Fe-oxide particles. The magnetic hysteresis (M(H)M(H)) loops, measured at 4.2 K, after the samples were cooled from 300 K in ±10 kOe fields, show unexpected large shifts in both horizontal and vertical directions for the 20/80 sample, while only horizontal shift was detected in the samples with higher Fe concentration. The anomalous vertical shift of the M(H)M(H) loop for the 20/80 sample, observed at low cooling field (10 kOe), is being associated with a large contribution from non-collinear magnetic structure of the particles surface. This surface magnetic contribution is strongly influenced by the field cooling magnitude. A simple model is proposed to interpret this result.  相似文献   

19.
We have studied the magnetic spin structure of antiferromagnetic CuFeO2 by X-ray diffraction (XRD) and Mössbauer spectroscopy. Its crystal structure determined by XRD analysis was a rhombohedral structure (space group R-3m) and lattice constants a0 and c0 were 3.0333 and 17.1595 Å, respectively. In spite of 4-Fe sublattices in a delafossite CuFeO2, its Mössbauer spectra were analyzed with 1-set (6-Lorentzian lines) below 10 K due to the collinear-commensurate spin structure, but the spectra were fitted with 4-sextet above 10 K due to the incommensurate spin structure. This phenomenon was attributed to the spin–lattice relaxation effect. Magnetic Néel temperature was also determined at 18 K, which corresponded to the high-spin Fe3+ valance state. On the other hand, CuFe0.98Al0.02O2 powder with a noncollinear spin structure was fitted with 4-sextet at 4.2 K.  相似文献   

20.
The oxides that form during thermal oxidation of natural FeS2 (pyrite and marcasite) consist of nanometer-sized crystals of α-Fe2O3 and γ-Fe2O3. This is shown with heating experiments that were made up to 650 °C, which resembles temperatures used in metallurgical processes. It is shown that magnetic measurements can play a key role in the investigation of this reaction, due to the unwanted blurring effects associated with finite crystal sizes if other methods are used. According to Mössbauer spectra combined with pXRD, many α-Fe2O3 crystals are in a stable magnetic state only due to the formation of bridging superexchange interactions in between them, but the γ-Fe2O3 experiences super-paramagnetic relaxation ceasing first at 20 K. Magnetisation measurements were used for two main purposes (1) determination of the amounts of γ-Fe2O3 in the products, and (2) for characterization of γ-Fe2O3 with respect to crystal size and possible magnetic surface effects such as spin-glass. It is proven that fine FeS2 grains produce more γ-Fe2O3 than coarse. At 500 °C the fine FeS2 grains oxidised into c. 30% γ-Fe2O3 and ca. 70% α-Fe2O3. At 525 °C, the γ-Fe2O3 amounts were also estimated in coarse oxidised FeS2, and results were ca. 20% and 10% γ-Fe2O3 for the fine and coarse FeS2 respectively. The γ-Fe2O3 crystal sizes were a function of both temperature and grain size, and it decreased with decreasing grain size, and upon rising the temperature from 450 to 550 °C. It is argued that the estimated errors during γ-Fe2O3 amount determination are due mainly to disordered magnetic sublattices at the crystal faces of γ-Fe2O3, giving an error of ca. 15% for those samples that have the smallest crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号