首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spin-transfer induced ultrafast precessional switching of magnetization in a Co/Cu/Co nanopillar device is studied. Micromagnetic calculations show that precessional magnetization switching occurs above a threshold current. The presence of interface uniaxial anisotropy in the Co-thin film free layer influences heavily the current and the energy required to initiate the switching in the device, and the speed of the precessional switching. The threshold current and the precessional switching time are significantly reduced by this effect.  相似文献   

2.
The current-induced magnetic switching is studied in Co/Cu/Co nanopillar with an in-plane magnetization traversed under the perpendicular-to-plane external field.Magnetization switching is found to take place when the current density exceeds a threshold.By analyzing precessional trajectories,evolutions of domain walls and magnetization switching times under the perpendicular magnetic field,there are two different magnetization switching modes:nucleation and domain wall motion reversal;uniform magnetization ...  相似文献   

3.
The correspondence between the crystallographic texture and intergranular exchange coupling interactions, with the switching mechanism and the thermal response of the magnetization in CoCrPt–SiO2 perpendicular recording media was investigated. Virgin hysteresis and isothermal remanence magnetization measurements both showed a three-stage process, which was interpreted to indicate that the Stoner–Wohlfarth coherent reversal mode is the dominant switching mechanism irrespective of the texture. For media samples with similar degree of texture, improvement in exchange decoupling of the media grains caused an increase in the onset field for the virgin magnetization process. The thermal decay of the magnetization, evaluated via the field-dependent viscosity coefficient peaked near the nucleation field, and the peak value showed a strong dependence on the strength of the exchange coupling interactions. A model establishing the role of the texture and exchange interactions in perpendicular recording media is put forth.  相似文献   

4.
We explore the ultrafast limit of spin torque magnetization reversal time. Spin torque precession during a spin torque current pulse and free magnetization ringing after the pulse is detected by time-resolved magnetotransport. Adapting the duration of the pulse to the precession period allows coherent control of the final orientation of the magnetization. In the presence of a hard axis bias field, we find optimum quasiballistic spin torque magnetization reversal by a single precessional turn directly from the initial to the reversed equilibrium state.  相似文献   

5.
We study how a magnetic field step triggers the precessional switching of the magnetization in an isotropic thin film. Using a variational approach, we make an analytical estimate of the switching frequency. We compare it to more general analytical models, and to the results obtained numerically by direct integration of the equations of motion. We show that the periodic motions of the three magnetization components can be described satisfactorily with truncated Fourier expansions, indicating a relatively high spectral purity of the magnetic response. Our analytical expressions are simple enough to be physically transparent at first sight, in contrast to the results of the more elaborate models that treat also anisotropy.  相似文献   

6.
We study analytically the precessional switching of the magnetization of a thin macrospin. We analyze its response when subjected to an external field along its in-plane hard axis. We derive the exact trajectories of the magnetization. The switching versus non switching behavior is delimited by a bifurcation trajectory, for applied fields equal to half of the effective anisotropy field. A magnetization going through this bifurcation trajectory passes exactly along the hard axis and exhibits a vanishing characteristic frequency at that unstable point, which makes the trajectory noise sensitive. Attempting to approach the related minimal cost in applied field makes the magnetization final state unpredictable. We add finite damping in the model as a perturbative, energy dissipation factor. For a large applied field, the system switches several times back and forth. Several trajectories can be gone through before the system has dissipated enough energy to converge to one attracting equilibrium state. For some moderate fields, the system switches only once by a relaxation dominated precessional switching. We show that the associated switching field increases linearly with the damping parameter. The slope scales with the square root of the effective anisotropy. Our simple concluding expressions are useful to assess the potential application of precessional switching in magnetic random access memories.Received: 2 October 2003, Published online: 19 November 2003PACS: 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling, etc.) - 75.60.Jk Magnetization reversal mechanisms - 75.75. + a Magnetic properties of nanostructures  相似文献   

7.
Spin wave equations describing the nonequilibrium precessional state of a ferromagnetic system are given. The equations reveal a new type of spin wave instability (SWI) towards growing domains of uniform magnetization. In the developed stages of SWI a nonstationary picture of domain chaos is revealed by numerical simulations. SWI is capable of explaining recent experimental observation of stochastic switching in precessional magnetization reversal.  相似文献   

8.
Based on both the spin diffusion equation and the Landau-LlTshitz-Gilbert (LLG) equation, we demonstrate the influence of out-of-plane spin torque on magnetization switching and susceptibility in a magnetic multilayer system. The variation of spin accumulation and local magnetization with respect to time are studied in the magnetization reversal induced by spin torque. We also research the susceptibility subject to a microwave magnetic field, which is compared with the results obtained without out-of-plane torque.  相似文献   

9.
We evidence multiple coherent precessional magnetization reversal in microscopic spin valves. Stable, reversible, and highly efficient magnetization switching is triggered by transverse field pulses as short as 140 ps with energies down to 15 pJ. At high fields a phase coherent reversal is found revealing periodic transitions from switching to nonswitching under variation of pulse parameters. At the low field limit the existence of a relaxation dominated regime is established allowing switching by pulse amplitudes below the quasistatic switching threshold.  相似文献   

10.
Magnetization relaxation processes, which are represented by the Gilbert damping term and the spin torque term in the Landau-Lifshitz-Gilbert (LLG) equation, are described by the radiation-spin interaction (RSI), where the radiation field is produced by magnetization precessional motion itself. It is shown that the LLG equation including the Gilbert damping term and the spin torque term is derived from the spin Hamiltonian containing the RSI. The derivation of the LLG equation is given in a self-consistent method. It is also shown that, according to RSI, the magnitude of the magnetization vector deviates from the magnetization saturation with the order of O(alpha(2)), where alpha is the Gilbert damping parameter.  相似文献   

11.
The theoretical limit of the minimal magnetization switching field and the optimal field pulse design for uniaxial Stoner particles are investigated. Two results are obtained. One is the existence of a theoretical limit of the smallest magnetic field out of all possible designs. It is shown that the limit is proportional to the damping constant in the weak damping regime and approaches the Stoner-Wohlfarth (SW) limit at large damping. For a realistic damping constant, this limit is more than 10 times smaller than that of so-called precessional magnetization reversal under a noncollinear static field. The other is on the optimal field pulse design: if the magnitude of a magnetic field does not change, but its direction can vary during a reversal process, there is an optimal design that gives the shortest switching time. The switching time depends on the field magnitude, damping constant, and magnetic anisotropy.  相似文献   

12.
金伟  万振茂  刘要稳 《物理学报》2011,60(1):17502-017502
本文基于宏观磁矩(macrospin)的Landau-Lifshitz-Gilbert方程,模拟研究了磁性自旋阀结构中由垂直膜面流向的自旋极化电流所激发的磁化转动动力学特性.直流自旋极化电流借助自旋转移矩效应可驱动磁矩翻转或作周期性振荡,交流电可以激发出具有混沌行为的磁矩振荡.展示了磁矩振荡行为随电流强度变化而发生倍周期分岔、直至混沌振荡的行为规律. 关键词: 自旋转移矩效应 微磁模拟 磁性自旋阀 混沌  相似文献   

13.
Tong-Xi Liu 《中国物理 B》2022,31(10):107501-107501
Spin—orbit torque (SOT) has been considered as one of the promising technologies for the next-generation magnetic random access memory (MRAM). So far, SOT has been widely utilized for inducing various modes of magnetization switching. However, it is a challenge that so many multiple modes of magnetization switching are integrated together. Here we propose a method of implementing both unipolar switching and bipolar switching of the perpendicular magnetization within a single SOT device. The mode of switching can be easily changed by tuning the amplitude of the applied current. We show that the field-like torque plays an important role in switching process. The field-like torque induces the precession of the magnetization in the case of unipolar switching, however, the field-like torque helps to generate an effective z-component torque in the case of bipolar switching. In addition, the influence of key parameters on the mode of switching is discussed, including the field-like torque strength, the bias field, and the current density. Our proposal can be used to design novel reconfigurable logic circuits in the near future.  相似文献   

14.
In order to achieve high-density recording, the detailed behavior of thermal degradation should be investigated. In this paper, the degradation of magnetization of high-density recording medium is examined using the 3-D finite element method (FEM) combined with the modeling of Stoner–Wohlfarth (SW) particles and Neel–Arrhenius switching probability. It is shown that the anisotropy field Hk suppressed the thermal degradation and the saturation magnetization Ms enhances it. The thermal degradation is also changed by the amplitude of magnetization.  相似文献   

15.
王日兴  叶华  王丽娟  敖章洪 《物理学报》2017,66(12):127201-127201
在理论上研究了垂直自由层和倾斜极化层自旋阀结构中自旋转移矩驱动的磁矩翻转和进动.通过线性展开包括自旋转移矩项的Landau-Lifshitz-Gilbert方程并使用稳定性分析方法,得到了包括准平行稳定态、准反平行稳定态、伸出膜面进动态以及双稳态的磁性状态相图.发现通过调节电流密度和外磁场的大小可以实现磁矩从稳定态到进动态之间的转化以及在两个稳定态之间的翻转.翻转电流随外磁场的增加而增加,并且受自旋极化方向的影响.当自旋极化方向和自由层易磁化轴方向平行时,翻转电流最小;当自旋极化方向和自由层易磁化轴方向垂直时,翻转电流最大.通过数值求解微分方程,给出了不同磁性状态磁矩随时间的演化轨迹并验证了相图的正确性.  相似文献   

16.
We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.  相似文献   

17.
Precessional switching of magnetization in CoPt and FePt nanofilms is investigated by solving the Landau–Lifshitz–Gilbert (LLG) equation analytically and numerically. Switching in these films occurs only above a critical value of the magnetic field, and it further depends on the magnetocrystalline anisotropy and saturation magnetization of the film. The presence of magnetic surface anisotropy in these films reduces the switching time significantly. Also, the switching time in the case of Pt-alloys of Co and Fe is low compared to that in the case of pure Co and Fe films.  相似文献   

18.
Magnetic soft X-ray microscopy images magnetism in nanoscale systems with a spatial resolution down to 15 nm provided by state-of-the-art Fresnel zone plate optics. X-ray magnetic circular dichroism (X-MCD) is used as the element-specific magnetic contrast mechanism similar to photoemission electron microscopy (PEEM), however, with volume sensitivity and the ability to record the images in varying applied magnetic fields which allows study of magnetization reversal processes at fundamental length scales. Utilizing a stroboscopic pump-probe scheme one can investigate fast spin dynamics with a time resolution down to 70 ps which gives access to precessional and relaxation phenomena as well as spin torque driven domain wall dynamics in nanoscale systems. Current developments in zone plate optics aim for a spatial resolution towards 10 nm and at next generation X-ray sources a time resolution in the fs regime can be envisioned.  相似文献   

19.
In large magnetoresistance devices spin torque-induced changes in resistance can produce GHz current and voltage oscillations which can affect magnetization reversal. In addition, capacitive shunting in large resistance devices can further reduce the current, adversely affecting spin torque switching. Here, we simultaneously solve the Landau-Lifshitz-Gilbert equation with spin torque and the transmission line telegrapher's equations to study the effects of resistance feedback and capacitance on magnetization reversal of both spin valves and magnetic tunnel junctions. While for spin valves parallel (P) to anti-parallel (AP) switching is adversely affected by the resistance feedback due to saturation of the spin torque, in low resistance magnetic tunnel junctions P-AP switching is enhanced. We study the effect of resistance feedback on the switching time of magnetic tunnel junctions, and show that magnetization switching is only affected by capacitive shunting in the pF range.  相似文献   

20.
Spin torque transfer structures with new spin switching configurations are proposed, fabricated and investigated in this paper. The non-uniform current-induced magnetization switching is implemented based on both GMR and MTJ nano devices. The proposed new spin transfer structure has a hybrid free layer that consists of a layer with conductive channels (magnetic) and non-conductive matrix (non-magnetic) and traditional free layer(s). Two mechanisms, a higher local current density by nano-current-channels and a non-uniform magnetization switching (reversal domain nucleation and growth) by a magnetic nanocomposite structure, contribute in reducing the switching current density. The critical switching current density for the new spin transfer structure is reduced to one third of the typical value for the normal structure. It can be expected to have one order of magnitude or more reduction for the critical current density if the optimization of materials and fabrication processes could be done further. Meanwhile, the thermal stability of this new spin transfer structure is not degraded, which may solve the long-standing scaling problem for magnetic random access memory (MRAM). This spin transfer structure, with the proposed and demonstrated new spin switching configurations, not only provides a solid approach for the practical application of spin transfer devices but also forms a unique platform for researchers to explore the non-uniform current-induced switching process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号