首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxalate ligand bridged mixed-metal molecular compounds NBu4Co(II)[Fe(III)(ox)3] and NBu4Cr(II)[Fe(III)(ox)3] (where NBu4+=tetra-n-butyl ammonium ion, ox2−=oxalate ion) are prepared. X-ray powder diffraction profiles are indexed in P63 space group to derive unit cell parameters. Their magnetic properties were studied in the temperature range of 5–300 K under different applied magnetic fields in zero-field-cooled as well as field-cooled conditions. The magnetic transition temperatures for these compounds were determined from the temperature dependence of remnant magnetization under a very low field. The compounds are ferrimagnetic in nature and exhibit a disordered structure at temperatures below the magnetic transition temperature.  相似文献   

2.
We have attempted to characterize the magnetic and electrical properties of a new mixed-metal molecular material {NBu4[Ni(II)0.5Fe(II)0.5Fe(III)(ox)3]}N synthesized by the use of trioxalatoferrate as the building block. Mössbauer spectroscopy was utilized in order to understand local spin structures in this compound. The results indicate that the compound is a semiconducting ferrimagnet with TN=30 K and room temperature conductivity of 6×10−15 Ω−1 cm−1 along with 1.8 eV activation energy under dark. The compound has no appreciable electrical response towards illumination.  相似文献   

3.
Fe2O3 hematite (alpha) nanoparticles suspended in the liquid phase of the liquid crystal 4,4-azoxyanlsole (PAA) are cooled below the freezing temperature (397 K) in a 4000 G dc magnetic field. The in field solidification locks the direction of maximum magnetization of the particles parallel to the direction of the applied dc magnetic field removing the effects of dynamical fluctuations of the nanoparticles on the magnetic properties allowing a study of the intrinsic magnetic properties of the nanoparticles as well as the anisotropic behavior of the ferromagnetic resonance (FMR) signal. Freezing in PAA allows temperature-dependent measurements to be made at much higher temperature than previous measurements. The field position, line width and intensity of the FMR signal as a function of temperature as well as the magnetization show anomalies in the vicinity of 200 K indicative of a magnetic transition, likely the previously observed Morin transition shifted to lower temperature due to the small particle size. Weak ferromagnetism is observed below Tc in contrast to the bulk material where it is antiferromagnetic below Tc. The Raman spectrum above and below 200 K shows no evidence of a change in lattice symmetry associated with the magnetic transition.  相似文献   

4.
The ground state of Gd3+ ions substituting for trivalent europium in the EuAl3(BO3)4 single crystal was studied by electron paramagnetic resonance (EPR) over the temperature range of 300-4.2 K and at pressures up to 9 kbar. The EPR spectra were analysed using the spin Hamiltonian of axial symmetry. The following parameters are reported: g=1.981±0.002, b20=280.18±0.12, b40=−12.95±0.08 and b60=0.61±0.12 (at Т=298 K). The distortions of the nearest environment of Gd3+ ion were analysed within the framework of the superposition model of crystal field.  相似文献   

5.
CoxFe3−xO4 (0?x?0.10) nanoparticles coated with tetramethyl ammonium hydroxide as a surfactant were synthesized by a co-precipitation technique. The Fe:Co ratio was tuned up to x=0.10 by controlling the Co2+ concentration during synthesis. The mean particle size, determined by transmission electron microscopy, ranged between 15±4 and 18±4 nm. The superparamagnetic blocking temperature and the magnetocrystalline anisotropy constant of the ferrofluids, determined using ac and dc magnetic measurements, scale approximately linearly with cobalt concentration. We also find distinct differences in the optical response of different samples under an applied magnetic field. We attribute changes in field-induced optical relaxation for the x=0 and 0.05 samples to differences in the anisotropic microstructure under an applied magnetic field.  相似文献   

6.
Electrical resistivity and thermoelectric power (TEP) have been measured in polycrystalline sample of CeNi0.75Co0.25Al4. The magnetization measurements have been performed in oriented powder with a-axis of the crystallites parallel to the external magnetic field. All the data have been compared with its parent compound CeNiAl4. In the range 120-300 K, the Seebeck coefficient is significantly higher for alloy than for the parent material and exhibits a peak at ∼150 K. R(T)/R(300) follows a logarithmic temperature dependence for all samples above 100 K, and rapidly decreases as the temperature is lowered. The decrement is much faster in the cobalt doped samples than in the parent compound, suggesting stronger electronic correlations in the former. Inverse magnetic susceptibility in oriented powder follows a Curie-Weiss law above 100 K and shows peff=2.7 slightly higher than that of the free Ce3+ ion value of 2.5.  相似文献   

7.
The manganates Sr4Mn3−xCrxO10 (x=0 and 0.2) have been synthesized by solid state reaction. Powder X-ray diffraction analysis shows orthorhombic symmetry with space group Cmca for both compounds. The magnetic susceptibility measurements show an antiferromagnetic transition at 192 and 176 K for x=0 and 0.2, respectively. The magnetic susceptibility data were estimated using a model based on spin exchange antiferromagnetic interactions in isolated (Mn4+) trimer; a paramagnetic contribution due to the chromium ions was added in the case of Cr-doped materials.  相似文献   

8.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

9.
Nanocrystalline CuFe2O4 and CuFe2O4/xSnO2 nanocomposites (x=0, 1, 5 wt%) have been successfully synthesized by one-pot reaction of urea-nitrate combustion method. The transmission electron microscope study reveals that the particle size of the as synthesized CuFe2O4 and CuFe2O4/5 wt%SnO2 are 10 and 20 nm, respectively. The SnO2 coating on the nanocrystalline CuFe2O4 was confirmed from HRTEM studies. The resultant products were sintered at 1100 °C and characterized by XRD and SQUID for compound formation and magnetic studies, respectively. The X-ray diffraction pattern shows the well-defined sharp peak that confirms the phase pure compound formation of tetragonal CuFe2O4. The zero field cooled (ZFC) and field cooled (FC) magnetization was performed using SQUID magnetometer from 2 to 350 K and the magnetic hysteresis measurement was carried out to study the magnetic properties of nanocomposites.  相似文献   

10.
Recently, we have discovered a new type of first order phase transition around 120 K for (n-C3H7)4N[FeIIFeIII(dto)3] (dto=C2O2S2), where the charge transfer transition between FeII and FeIII occurs reversibly. In order to elucidate the origin of this peculiar first order phase transition. Detailed information about the crystal structure is indispensable. We have synthesized the single crystal of (n-C3H7)4N[CoIIFeIII(dto)3] whose crystal structure is isomorphous to that of (n-C3H7)4N[FeIIFeIII(dto)3], and determined its detailed crystal structure. Crystal data: space group P63, a=b=10.044(2) Å, c=15.960(6) Å, α=β=90°, γ=120°, Z=2 (C18H28NS6O6FeCo). In this complex, we found a ferromagnetic transition at Tc=3.5 K. Moreover, on the basis of the crystal data of (n-C3H7)4N[CoIIFeIII(dto)3], we determined the crystal structure of (n-C3H7)4N[FeIIFeIII(dto)3] by simulation of powder X-ray diffraction results.  相似文献   

11.
Using the 2,5-bis(2-pyridyl)-1,3,4-thiadiazole (bptd), we recently prepared [Cu2(bptd) (H2O) Cl4] and [Ni2(bptd)2 (H2O)4] Cl4, 3H2O in which the magnetic centres are connected through one diazine+one chloro and two diazine ligand bridges, respectively. These two compounds are the first examples that show null intramolecular magnetic interactions despite M-M distances close to 3.7 Å within perfectly planar edifices:Down to , [Cu2(bptd)Cl4(H2O)] is paramagnetic while, below Tt, half of the Cu2+ions interact, leading to residual paramagnetism of one Cu2+/f.u. Magnetic susceptibility measurements, EPR and pulsed EPR study indicate the original intermolecular nature of AF exchanges.[Ni2(bptd)2(H2O)4]Cl4·3H2O susceptibility obeys a Curie-law involving pure paramagnetism. Moreover, its EPR spectrum can be interpreted on the basis of virtual S=1 monomers. Below 70 K, Zero Field Splitting (D∼275 G) due to dipolar interactions without magnetic exchanges could be responsible for the LT spectra splitting. For both compounds, the thia role is suggested as partially responsible for the null-in-plane magnetic exchanges.  相似文献   

12.
Cobalt-substituted ferrite nanoparticles were synthesized with a narrow size distribution using reverse micelles formed in the system water/AOT/isooctane. Fe:Co ratios of 3:1, 4:1, and 5:1 were used in the synthesis, obtaining cobalt-substituted ferrites (CoxFe3−xO4) and some indication of γ-Fe3O4 when 4:1 and 5:1 Fe:Co ratios were used. Inductively coupled plasma mass spectroscopy (ICP-MS) verified the presence of cobalt in all samples. Fourier transform infrared (FTIR) showed bands at ∼560 and ∼400 cm−1, characteristic of the metal–oxygen bond in ferrites. Transmission electron microscopy showed that the number median diameter of the particles was ∼3 nm with a geometric deviation of ∼0.2. X-ray diffraction (XRD) confirmed the inverse spinel structure typical of ferrites with a lattice parameter of a=8.388 Å for Co0.61Fe0.39O4, which is near that of CoFe2O4 (a=8.394 Å). Magnetic properties were determined using a superconducting quantum interference device (SQUID). Coercivities higher than 8 kOe were observed at 5 K, whereas at 300 K the particles showed superparamagnetic behavior. The anisotropy constant was determined based on the Debye model for a magnetic dipole in an oscillating field and an expression relating χ′ and the temperature of the in-phase susceptibility peak. Anisotropy constant values in the order of ∼106 erg/cm3 were determined using the Debye model, whereas anisotropy constants in the order of ∼107 erg/cm3 were calculated assuming Ωτ=1 at the temperature peak of the in-phase component of the susceptibility curve as commonly done in the literature. Our analysis demonstrates that the assumption Ωτ=1 at the temperature peak of χ′ is rigorously incorrect.  相似文献   

13.
The AFMR spectra of the NdFe3(BO3)4 crystal are measured in a wide range of frequencies and temperatures. It is found that by the type of its magnetic anisotropy the compound is an “easy-plane” antiferromagnet with a weak anisotropy in the basal plane. The effective magnetic parameters are determined: anisotropy fields Ha1=1.14 kOe and Ha2=60 kOe and magnetic excitation gaps Δν1=101.9 GHz and Δν2=23.8 GHz. It is shown that commensurate-incommensurate phase transition causes a shift in resonance field and a considerable change in absorption line width.At temperatures below 4.2 K nonlinear regimes of AFMR excitation at low microwave power levels are observed.  相似文献   

14.
We synthesized the Mn-doped Mg(In2−xMnx)O4 oxides with 0.03?x?0.55 using a solid-state reaction method. The X-ray diffraction patterns of the samples were in a good agreement with that of a distorted orthorhombic spinel phase. Their lattice parameters and unit-cell volumes decrease with x due to the substitution of the smaller Mn3+ ions to the larger In3+ ions. The undoped MgIn2O4 oxide presents diamagnetic signals for 5 K?T?300 K. The M(H) at T=300 K reveals a fairly negative-sloped linear relationship. Neither magnetic hysteresis nor saturation behavior was observed in this parent sample. For the Mn-doped samples, however, positive magnetization were observed between 5 and 300 K even if the x value is as low as 0.03. The mass susceptibility enhances with Mn content and it reaches the highest value of 1.4×10−3 emu/g Oe (at T=300 K) at x=0.45. Furthermore, the Mn-doped oxides with x=0.06 and 0.2, respectively, exhibit nonlinear magnetization curves and small hysteretic loops in low magnetic fields. Susceptibilities of the Mn-doped samples are much higher than those of MnO2, Mn2O3 oxides, and Mn metals. These results show that the oxides have potential to be magnetic semiconductors.  相似文献   

15.
133Cs (I=7/2) nuclear magnetic resonance in a Cs2CuCl4 single crystal grown by using the slow evaporation method was measured in its three mutually perpendicular crystal planes. The 133Cs resonances of two different groups with two crystallographically inequivalent cesium nuclei, Cs(I) and Cs(II), in the unit cell were recorded. The transferred hyperfine fields for Cs(I) and Cs(II) calculated from the paramagnetic shift and the molecular susceptibility measurements could be expressed by the linear equation Hhf=AT+B. The angular dependence of the 133Cs nuclear magnetic resonance spectra showed that the Cs(I) and the Cs(II) nuclei had different values for the quadrupole coupling constant. The electric field gradient tensors of Cs(I) and Cs(II) were symmetric, and the orientations of their principal axes did not coincide. The Cs(I) ion surrounded by 11 chlorine ions had a small quadrupole parameter, a smaller charge distribution, and a small value for the transferred hyperfine field. However, the Cs(II) ion surrounded by nine chlorine ions had a larger quadrupole parameter, a larger charge distribution, and a larger value for the transferred hyperfine field.  相似文献   

16.
17.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

18.
The modifications in electrical and magnetic properties of polycrystalline bulk La0.7Ca0.3Mn1−xTxO3 (T=Fe, Ga) samples at relatively higher doping concentration (x=0.08-0.12) are investigated. All the synthesized, single phase samples were subjected to resistivity measurements in the temperature range 50-300 K. No insulator-metal transition (TP) was observed for Fe doped samples with x=0.12. For all the other samples the transition temperature decreased with increase in doping concentration. The small polaron hoping energy was found to increase, rather slowly, with increase in doping concentration. The effect on magnetic properties is also prominently observed with respect to doping element and doping concentration. Interestingly, with the increase in doping concentration, the Curie temperature (TC) and TP separate out significantly indicating decoupling of electric and magnetic properties. Changes in these properties have been analyzed on the basis of magnetic disorder introduced in the system due to the magnetic and nonmagnetic nature of these ions rather than strong lattice effects which is insignificant due to similar ionic radii of Fe+3 and Ga+3 when compared to that of Mn+3.  相似文献   

19.
We have carried out 99/101Ru and 63/65Cu nuclear magnetic resonance experiments in order to investigate magnetic and electronic properties of the magnetic superconductor RuSr2RECu2O8 (RE=Gd, Eu and Y). The two kinds of 99/101Ru signals were observed in the magnetically ordered state for each system, suggesting a charge segregation of Ru5+ (S=3/2) and Ru4+ (S=1) ions in the RuO2 layers. The internal field at the Cu sites is revealed to be of the order of kilo Oe, indicating weak magnetic interactions between the CuO2 and RuO2 planes. The temperature dependence of nuclear spin-lattice relaxation time T1 of 63Cu in RE=Y shows a ‘spin gap’ like behavior, suggesting the system is under-doped.  相似文献   

20.
The red phosphors NaY1−xEux(WO4)2 with different concentrations of Eu3+ were synthesized via the combustion synthesis method. As a comparison, NaEu(WO4)2 was prepared by the solid-state reaction method. The phase composition and optical properties of as-synthesized samples were studied by X-ray powder diffraction and photoluminescence spectra. The results show that the red light emission intensity of the combustion synthesized samples under 394 nm excitation increases with increase in Eu3+ concentrations and calcination temperatures. Without Y ions doping, the emission spectra intensity of the NaEu(WO4)2 phosphor prepared by the combustion method fired at 900 °C is higher than that prepared by the solid-state reaction at 1100 °C. NaEu(WO4)2 phosphor synthesized by the combustion method at 1100 °C exhibits the strongest red emission under 394 nm excitation and appropriate CIE chromaticity coordinates (x=0.64, y=0.33) close to the NTSC standard value. Thus, its excellent luminescence properties make it a promising phosphor for near UV InGaN chip-based red-emitting LED application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号