共查询到20条相似文献,搜索用时 15 毫秒
1.
A model based on localized partition function and master equation was set up to calculate the zero-field-cooled (ZFC) and field-cooled (FC) curves of a non-interacting magnetic nanoparticle assembly with randomly oriented anisotropy. The peak temperature of the ZFC curve corresponds to the highest energy barrier that acts against the unblocking process, and could be described well by an equation covering the heating rate effect. The predicted H2/3 field dependence of the peak temperature is in good agreement with published results. 相似文献
2.
Size effect on the magnetization and the coercivity of nanocrystalline Ni films has been examined at room temperature. Agreement between modeling predictions and measurements reveals that the size-suppressed magnetization results from the drop of spin-spin exchange energy due to the coordination number (CN) imperfection of atoms near the surface edges, and that the size-enhanced coercivity arises from intergrain interaction that is proportional to the inverse of particle size. Findings herewith and reported previously on the size-induced lattice contraction and Curie temperature suppression evidence the significance of atomic CN imperfection on the unusual behavior of a ferromagnetic nanosolid. 相似文献
3.
Serkan Erdin 《Physics letters. A》2008,372(4):493-497
We report a detailed study of a double-exchange model proposed for the molecule-based magnets. The model is applied to a two-dimensional periodic complex made of a transition metal and an organic molecule in which the electronic structure is described by effective d orbitals of the transition metal ion at infinite Hund's coupling limit and the lowest unoccupied molecular orbital of the organic molecule, π∗. Depending on the average electron density of the organic molecules and various superexchange couplings between metal ions' core spins, magnetic states of the complex are investigated. Performing Monte Carlo calculations on a model Hamiltonian for various electron densities of the organic molecule, the average magnetization and critical magnetic ordering temperatures are determined. 相似文献
4.
High-frequency response of nanostructured magnetic materials 总被引:1,自引:0,他引:1
N. Vukadinovic 《Journal of magnetism and magnetic materials》2009,321(14):2074-2081
This paper reports a brief overview on recent developments regarding the high-frequency response in the GHz range of nanostructured magnetic materials. Emphasis is placed on the linear regime in the frequency domain characterized by the dynamic susceptibility spectrum. Some modeling tools and experimental probes allowing determination of the dynamic susceptibility spectrum are first rapidly reviewed and their respective advantages and disadvantages are discussed. Next, some illustrative examples of the high-frequency response of nanopatterned materials based on recent works are presented. The role played by the shape of the element on the characteristics of excitation spectrum is underlined. Lastly, some prospects are proposed and promising trends are highlighted. 相似文献
5.
P. Imperia W. Kandulski A. Kosiorek H. Głaczyńska H. Maletta M. Giersig 《Journal of magnetism and magnetic materials》2008
Atomic force microscopy (AFM), X-ray magnetic circular dichroism (XMCD), magnetic force microscopy (MFM) and vibrating sample magnetometry (VSM) have been used to measure the magnetic and geometrical characteristics of triangular-shaped Co structures of lateral size 730 nm and thickness 32 nm, prepared by nanosphere lithography (NSL). Evidence of in-plane six-fold magnetic anisotropy induced by the symmetry of the structure has been found. By means of XMCD measurements, performed at remanence after applying a pulsed field, a structure rotation angle-dependent oscillation of about 15% with a periodicity of 60° has been observed for both the orbital and spin moments. Furthermore, the system exhibits the angular hysteresis effect. The magnetic measurements performed by MFM show a reduction of the magnetic configurations to only two states, one quasi-single domain Y state and second, a combination of vortex and Y state. 相似文献
6.
M. C. Desjonquères C. Barreteau G. Autès D. Spanjaard 《The European Physical Journal B - Condensed Matter and Complex Systems》2007,55(1):23-27
We show that considerable orbital magnetic moments and magneto-crystalline anisotropy energies are obtained for a Fe monatomic
wire described in a tight-binding method with intra-atomic electronic interactions treated in a full Hartree Fock (HF) decoupling
scheme.
Even though the use of the orbital polarization ansatz with simplified Hamiltonians leads to fairly good results when the
spin magnetization is saturated this is not the case of unsaturated systems. We conclude that the full HF scheme is necessary
to investigate low dimensional systems. 相似文献
7.
The results obtained by partially substituting Ge for B and Si in the FINEMET alloy for the purpose of improving its magnetic properties at high temperatures are presented in this work. Nanocrystalline ribbons were obtained from controlled crystallization of amorphous material made employing the melt spinning technique. The studied compositions were: Fe73.5Si13.5Ge2Nb3B7Cu1 and Fe73.5Si13.5Ge4Nb3B5Cu1. The structural evolution of these alloys was studied using X-ray diffraction (XRD) and differential scanning calorimetry (DSC) and these results were correlated with their magnetic properties at different annealing temperatures. The coercivity obtained for both alloys was below 1 A/m at anneling temperatures between 773 and 823 K. The amorphous saturation magnetization was satisfactory, almost 137 emu/g, comparable with that obtained for FINEMET alloys. The nanocrystallization and the Curie temperatures are dependent on Ge concentration. 相似文献
8.
Haitao Yang Tomoyuki Ogawa Daiji Hasegawa C.N. Chinnasamy Migaku Takahashi 《Journal of magnetism and magnetic materials》2006
Monodisperse bimetallic Pd–Co nanoparticles were prepared via a thermal decomposition of cobalt carbonyl using palladium seeds at the Pd/Co molar ratios 0.5%, 1%, and 5%. The heterogeneously nucleated nanoparticles without any size-selective precipitation are sufficiently uniform to self-assemble into ordered arrays. The as-synthesized nanoparticles are each a single crystal with a complex cubic structure called ε-Co. The presence of Pd seeds seems to improve the stability of Co nanoparticles against oxidation based on the results from time-dependent magnetization measurement. 相似文献
9.
K. Simeonidis S. Mourdikoudis I. Tsiaoussis C. Dendrinou-Samara M. Angelakeris O. Kalogirou 《Journal of magnetism and magnetic materials》2008
This work concentrates on the influence of synthetic mechanisms of FePt nanoparticles on their self-arrangement and some structural and magnetic properties as studied by means of different electron microscopy techniques and SQUID magnetometry. High-reflux points associated with long boiling durations seem adequate to increase the iron precursor's decomposition yield and facilitate the simultaneous cubic to tetragonal FePt transformation, in single-phase FePt nanoparticles. Nevertheless, such conditions also result in the loss of long-range arrangement and in the appearance of coalescence effects. A core–shell structure comprising of FePt and Fe3O4 is favored under mild thermal conditions during synthesis, which seems to confront the undesirable atomic diffusion. Additionally, particle isolation due to the surfactant coating leads in an hcp-symmetry self-assembly. Moreover, working at lower temperatures allows a homogeneous mixture between different phases producing binary composite arrays. 相似文献
10.
The structural, electronic, and magnetic properties of ultrathin Cu-coated Co nanowires have been studied by using empirical genetic algorithm simulations and a tight-binding spd model Hamiltonian in the unrestricted Hartree-Fock approximation. For some specific stoichiometric compositions, Cu atoms occupy the surface, while Co atoms prefer to stay in the interior, forming the perfect coated multishell structures. The outer Cu layers lead to substantial variations in the magnetic moment of interior Co atoms, depending on the structure and thickness of Cu layers. In particular, single Co atom row at the center of nanowire is found to be nonmagnetic when coated with two Cu layers. All the other Co nanowires in the coated Cu shell are still magnetic but the magnetic moments are reduced as compared with Co nanowires without Cu coating. The interaction between Cu and Co atoms induces nonzero magnetic moment for Cu atoms. 相似文献
11.
12.
Hongyan Li Michael T. Klem Karl B. Sebby David J. Singel Mark Young Trevor Douglas Yves U. Idzerda 《Journal of magnetism and magnetic materials》2009,321(3):175-180
Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles’ easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size. 相似文献
13.
Fe3O4 nanowire arrays with different diameters of D=50, 100, 150 and 200 nm were prepared in anodic aluminum oxide (AAO) templates by an electrodeposition method followed by heat-treating processes. A vibrating sample magnetometer (VSM) and a Quantum Design SQUID MPMS magnetometer were used to investigate the magnetic properties. At room temperature the nanowire arrays change from superparamagnetism to ferromagnetism as the diameter increases from 50 to 200 nm. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements show that the blocking temperature TB increases with the diameter of nanowire. The ZFC curves of D=50 nm nanowire arrays under different applied fields (H) were measured and a power relationship between TB and H were found. The temperature dependence of coercivity below TB was also investigated. Mössbauer spectra and micromagnetic simulation were used to study the micro-magnetic structure of nanowire arrays and the static distribution of magnetic moments of D=200 nm nanowire arrays was investigated. The unique magnetic behaviors were interpreted by the competition of the demagnetization energy of quasi-one-dimensional nanostructures and the magnetocrystalline anisotropy energy of particles in nanowires. 相似文献
14.
Elena V. Tartakovskaya Manuel Vázquez 《Journal of magnetism and magnetic materials》2010,322(6):743-747
Classical microscopic spin reorientation phase transitions (RPT) are the result of competing magnetocrystalline anisotropies. RPTs can also be observed in discrete macroscopic systems induced by competing shape anisotropies and magnetostatic coupling. Such a configurational RPT was recently observed in series of self-organized hexagonal arrays of 2.5 μm long, 25-60 nm diameter circular permalloy nanowires grown in anodic alumina matrix. This RPT is a crossover transition from a one-dimensional easy axis “wire” behavior of weakly interacting uniaxial nanowires to a two-dimensional behavior of strongly coupled “wire film” having an easy plane anisotropy. It is shown that RPT takes place due to the competition between the intrinsic dipolar forces in individual wires and the external dipolar field of interacting nanowires in the array. The crossover occurs at a volume ratio of 0.38 for 65 nm periodicity. The experimental results are in agreement with the semi-analytical calculations of the dipolar interaction fields for these arrays of circular ferromagnetic nanowires, and are interpreted in terms of the Landau phase transition theory. The conditions for the crossover and the order of the phase transition are established. Based on the contribution to the magnetic energy from the flower state at the ends of the wires, it is concluded that the observed transition is of the first order. 相似文献
15.
Kyu Won Lee 《Solid State Communications》2004,129(11):697-700
We have studied the finite size effect in the quasi-two-dimensional Ising model by using a Monte Carlo simulation. A marked finite size effect was found with decreasing interlayer interaction. Aside from the well-known three- to two-dimensional crossover, a three- to one-dimensional crossover at a crossover size Lc∼(λ/2)−ν/φ was revealed as an origin of the marked finite size effect, where λ is the interlayer to intralayer interaction ratio, and ν and φ are the critical exponent for the correlation length and the crossover exponent, respectively. While the former crossover is driven by temperature, the latter is driven by size at a fixed λ. 相似文献
16.
Using a nonequilibrium Monte Carlo method suitable to nanomagnetism, we investigate representative systems of interacting sub-10 nm grained nanomagnets with large uniaxial anisotropy. Various magnetization memory and aging effects are found in such systems. We explain these dynamical effects using the distributed relaxation times of the interacting nanomagnets due to their large anisotropy energies. 相似文献
17.
D.C. Gonzalez M.E. Kiziroglou X. Li A.A. Zhukov H. Fangohr P.A.J. de Groot P.N. Barttlet C.H. de Groot 《Journal of magnetism and magnetic materials》2007
We have succeeded in aligning self-assembled structures by using a lithographically defined stripe. The 140 nm wide by 100 nm high SiO2 strip is shown to guide the assembly of 500 nm latex spheres so that spheres are aligned along the strip and are in registration on either side of the strip. This method can be used to increase long-range ordering in magnetic storage systems without compromising the density. Inverse sphere Ni arrays were made by electrodeposition through the latex template. We also show that the hexagonal symmetry of the resulting inverse sphere Ni arrays can be simulated using the approach presented below. 相似文献
18.
The low-temperature magnetization of a film was analyzed by the use of exact Bose representation of spin operators that does not suffer from the presence of unphysical states. The magnetization of thin films has exponentially small temperature correctness, so that Dyson’s proof about exponentially small correction coming from two bosons at ideal lattice point cannot be used in film analyses. The main conclusions of this work are that magnetic lattice of a thin film is more rigid than the macroscopic lattice and that the autoreduction process (the three layer film divides into two layer subfilms) takes place in the film. 相似文献
19.
C.L. Dong Y.Y. Chen C.L. Chen J.-H. Guo C.L. Chang 《Journal of magnetism and magnetic materials》2006
We presented the X-ray magnetic circular dichroism (XMCD) and X-ray absorption spectroscopy (XAS) studies of heavy fermion compound CeAl2 bulk and 8 nm nanoparticles, performed at the Ce M4,5- and L3- absorption edges. XMCD and XAS revealed that Ce in bulk CeAl2 exhibits localized 4f1 character with magnetic ordering. The Ce in nanoparticles, on the other hand, shows a small amount delocalized 4f0 character with non-magnetic Kondo behavior. By applying general sum rules, an estimation of the orbital and spin contribution to those Ce 4f moments can be obtained. Our results also demonstrated that the magnetic behavior in CeAl2 is very sensitive to the degree of localization of the 4f electrons. 相似文献
20.
Alessandro Chiolerio Edvige Celasco Federica Celegato Salvatore Guastella Paola Martino Paolo Allia Paola Tiberto Fabrizio Pirri 《Journal of magnetism and magnetic materials》2008
A specific technique of numerical treatment of atomic force microscopy (AFM) and magnetic force microscopy (MFM) signal has been developed to enhance the quality of raw images, in order both to improve their contrast and to gain better insight on the sample topography and on the local arrangement of the magnetisation vector. Basically, the technique consists in computing the optimum conformal transformation that allows one to superimpose two AFM images of the same area, acquired performing subsequent scans whose fast scan axis were mutually perpendicular, and applying the inverse transform to the second image. After MFM image superposition, the two datasets were either summed or subtracted, in order to improve the magnetic contrast. Computations have been done in a Matlab® workspace with the help of Image Processing Toolbox 4.2. Improved MFM images obtained on both dots and antidots thin evaporated Co arrays in the demagnetised state (after performing alternate field demagnetisation parallel and perpendicular to the array plane) have been interpreted. Samples consisting of large-size patterns (1×1 mm) of circular dots/antidots with square/hexagonal lattices and minimum diameters of 1 μm were prepared by optical lithography. The magnetic film thickness was chosen depending on resist thickness, and varied between 25 and 150 nm, with a fixed ratio 1:4 between metal/resist film thickness. MFM was exploited to obtain images of either intra-dot or inter-antidot magnetic structures. 相似文献