首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Transport models of diffusion-induced bubble growth in viscoelastic liquids are developed and evaluated. A rigorous model is formulated that can be used to describe bubble growth or collapse in a non-linear viscoelastic fluid, and takes into account convective and diffusive mass transport as well as surface tension and inertial effects. Predictions for bubble growth dynamics demonstrating the importance of fluid elasticity are presented. These predictions indicate that for diffusion-induced bubble growth in viscoelastic liquids, the lower bound for growth rate is given by growth in a Newtonian fluid and the upper bound by diffusion-controlled growth. The influence of non-linear fluid rheology on bubble growth dynamics is examined and found to be relatively minor in comparison to fluid elasticity. It is shown how previously published models employing various approximations can be derived from the rigorous model. Comparisons of predicted bubble growth dynamics from the rigorous and approximate models are used to establish the ranges of applicability for two commonly-used approximations. These comparisons indicate that models using a thin boundary layer approximation have a rather limited range of applicability. An analysis of published experimental bubble growth data is also carried out using appropriate transport models.  相似文献   

3.
Various types of instabilities are exposed in this paper for time-strain separable single-integral viscoelastic constitutive equations (CE's). They were distinguished into two groups and defined as Hadamard and dissipative type of instabilities. As for the Hadamard-type, previously obtained criteria are found to be necessary only. They are necessary and sufficient only for thermodynamic stability. Improved, stricter Hadamard stability criteria are described briefly in this paper, and then applied to study of stability of several CE's. It is shown that the Currie potential with the K-BKZ equation and the model proposed by Papanastasiou et al. are Hadamard unstable. In the case of dissipative stability, the necessary and sufficient condition for stress boundedness in any regular flow with a given history, is proved. Then, this criterion was applied to the neoHookean, Mooney, and Yen and McIntire specifications of the general K-BKZ model, to exhibit unbounded solutions. In addition, Larson-Monroe potential which is later proved to be Hadamard unstable but satisfies the above criterion of boundedness, is shown to have unstable decreasing branch in steady simple shear flow. At present, to the authors' knowledge, there is no viscoelastic single-integral CE of factorable type proposed in the literature which can satisfy all the Hadamard and dissipative stability criteria.  相似文献   

4.
Simple rheological equations that describe non-linear viscoelastic phenomena in polymeric liquids have long attracted the attention of many rheologists. Although there are many ways of deriving such equations, only one concept is considered here. This concept is based on the introduction of an internal parameter, the recoverable strain tenson, and arises from a special kinematic study together with the formalism of irreversible thermodynamics. The main part of the paper sets out the theory for a single mode but a multimode extension is demonstrated towards the end and is compared with experimental data. Finally some of the problems that remain unsolved in the theory are discussed.The aim of this paper is to acquaint rheologists with the author's views as the model rheological equations he developed have recently been discussed in the literature without his participation.  相似文献   

5.
6.
The numerical simulation of the viscoelastic flow through a wavy channel was carried out using the modified Giesekus model. It was found that the excess pressure loss relates to the stretch-thickening properties of elongational viscosity and the geometry of the wavy channel through a large elongational component of the flow at the winding part of the channel. The profiles of the axial component of the velocity become significantly asymmetric when the excess pressure loss occurs. Furthermore, the velocity profiles of a 0.1 wt% solution of polyacrylamide were measured using laser Doppler velocimetry. The results of these measurements are compared to the numerical results. Received: 30 June 1998 Accepted: 20 May 1999  相似文献   

7.
R. Steller 《Rheologica Acta》1985,24(6):541-546
A 5-constant constitutive equation is proposed. The analytical form for the relaxation modulus as a function of flow conditions was chosen based on experimental data for stress-relaxation in solid polymers. The resulting formulae for the material functions in simple and oscillatory shear flow fulfil the empirical Cox-Merz rule as well as other phenomenological relations formulated by Coleman and Markowitz. The theoretical results are compared with experimental data obtained by Han for various polymer melts. Good agreement between theory and experiment is found.  相似文献   

8.
9.
10.
A review of our work on the stability of plane Couette flow of a viscoelastic liquid is given. The first part of the review is based on the assumption of a “short memory” of the fluid. The Reynolds-Orr energy criterion intimates the possibility of instability at very low Reynolds numbers. A linear stability analysis for disturbances in the flow plane shows that beyond the stability limit given by the energy criterion there are always disturbances which grow with time. A critical assessment of the short memory theory shows the severe limitations of its applicability.In the second part of the paper, the assumption of short memory is dropped. The stability of plane Couette flow with respect to special disturbances perpendicular to the flow plane is investigated for a Maxwell fluid. The flow is unstable if the product of Reynolds number and Weissenberg number is higher than a certain limit, which has the value one for a simple Maxwell fluid. This result can also be interpreted as follows: The flow becomes unstable if the velocity at the boundary walls is higher than the shear wave velocity of the fluid.  相似文献   

11.
Summary After brief reference to energetical principles in order to find suitable constitutive equations for non-linear viscoelastic fluids, the behaviour of stress components is examined, for a simple shear motion with sinusoidal time time varying displacements of a liquid with an oscillating fading memory.
Sommario Dopo aver richiamato brevemente un possibile procedimento per la determinazione della equazione costitutiva per liquidi viscoelastici nel caso di grandi deformazioni, si esamina il comportamento delle componenti del tensore degli sforzi nel caso di un moto periodico a filetti rettilinei e paralleli, supposto che il liquido abbia una memoria debole e oscillante nel tempo.


Research supported by C.N.R., Gruppo nazionale per la fisica matematica.  相似文献   

12.
The viscoelastic behavior of polymeric systems based upon the Leonov model has been examined for (i) the stress growth at constant strain rate, (ii) the stress growth at constant speed and (iii) the elastic recovery in elongational flow. The model parameters have been determined from the available rheological data obtained either in steady shear flow (shear viscosity and first normal-stress difference as a function of shear rate) or oscillatory flow (storage and loss moduli as a function of frequency in the linear region) or from extensional flow at very small strain rates (time-dependent elongation viscosity in the linear viscoelastic limit). In addition, the effect of the parameter characterizing the strain-hardening of the material during elongation has also been studied. The estimation of this parameter has been based upon the structural characteristics of the polymer chain which include the critical molecular weight and molecular weight of an independent segment. Five different polymer melts have been considered with varying number of modes (maximum four modes). Resulting predictions are in fair agreement with corresponding experimental data in the literature.  相似文献   

13.
R. Steller 《Rheologica Acta》1985,24(6):547-550
A constitutive equation presented earlier has been generalized to describe the transient shear flow behaviour of polymer liquids. The mathematical structure and properties of such a generalization have been discussed. The practical expressions for the generalized relaxation modulus have been proposed.  相似文献   

14.
This work is an experimental study of the rising behavior of single air bubbles in infinite stagnant non-Newtonian liquids. Aqueous solutions of carboxymethyl cellulose (CMC) are selected to study the effect of rheological properties. The high speed photography is employed to record the bubble motion in CMC solutions. The bubble size, rising trajectory, bubble shape and velocities are determined by digital image processing technique. As expected, the rheological properties have great influence on the rising behavior of single bubble. In the less concentrated CMC solutions, the bubble rising process can be divided into three stages according to spatial evolution of bubble shape. The deformation changes the trajectories of rising bubbles and bubble hydrodynamics. As the solution concentration increases, the transitional stage gradually disappears. In the most concentrated CMC solution, the first continuous shape flattening stage is directly followed by a rising process with bubble shape basically constant, the rectilinear path and constant rising velocity. Dimensional analysis is performed to formulate a general dimensionless correlation for the deformation and motion of bubbles in infinite liquids by considering the rheological properties.  相似文献   

15.
In this paper a three-dimensional isotropic fractional viscoelastic model is examined. It is shown that if different time scales for the volumetric and deviatoric components are assumed, the Poisson ratio is time varying function; in particular viscoelastic Poisson ratio may be obtained both increasing and decreasing with time. Moreover, it is shown that, from a theoretical point of view, one-dimensional fractional constitutive laws for normal stress and strain components are not correct to fit uniaxial experimental test, unless the time scale of deviatoric and volumetric are equal. Finally, the model is proved to satisfy correspondence principles also for the viscoelastic Poisson’s ratio and some issues about thermodynamic consistency of the model are addressed.  相似文献   

16.
Behavior of polymer melts in biaxial as well as uniaxial elongational flow is studied based on the predictions of three constitutive models (Leonov, Giesekus, and Larson) with single relaxation mode. Transient elongational viscosities in both flows are calculated for three constitutive models, and steady-state elongational viscosities are obtained as functions of strain rates for the Giesekus and the Larson models.Change of elongational flow behavior with adjustable parameter is investigated in each model. Steady-state viscosities E and B are obtained for the Leonov model only when the strain-hardening parameter is smaller than the critical value cr determined in each flow. In this model, uniaxial elongational viscosity E increases with increasing strain rate , while biaxial elongational viscosity B decreases with increasing biaxial strain rate B . The Giesekus model predictions depend on the anisotropy parameter . E and B increase with strain rates for small B while they decrease for large . When is 0.5, E in increasing, but B is decreasing. The Larson model predicts strain-softening behavior for both flows when the chain-contraction parameter > 0.5. On the other hand, when is small, the steady-state viscosities of this model show distinct maximum around = B = 1.0 with relaxation time . The maximum is more prominent in E than in B .  相似文献   

17.
18.
In this paper, a numerical solution for viscoelastic drop formation from a nozzle into an ambient gas is presented. A volume of fluid (VOF) method is used to predict the formation and break-up process of viscoelastic drop. Here, Giesekus model is used as the constitutive equation. The major features of the phenomenon, such as instantaneous drop length, limiting length of a drop at breakup, minimum drop radius and the volume of the primary drop is determined for a range of the parameter space spanned by the appropriate dimensionless groups. The results reveal that enhancing the mobility factor, Wiessenberg number, and viscosity ratio causes a noticeable decrease in limiting drop length and a small decrease on the primary drop volume. Also, the increasing of gravitational bond number and capillary number causes the limiting drop length increases while the primary drop volume is reduced.  相似文献   

19.
20.
Dynamics of a solid particle and non-deformable gaseous bubble in viscous fluid are studied analytically and numerically within the framework of creeping flow regime (flow at vanishingly small Reynolds numbers). Equations of motion for the particle and bubble include the consideration of the buoyancy force, Stokes drag force and memory-integral drag force. Exact analytical solutions are obtained and categorised in terms of inclusion (particle or bubble) density with respect to the density of a surrounding fluid. Through the analytical and numerical solutions, the dynamics of solid particle and air bubble in water have been found to behave differently especially at the early stages of motion, whereas some qualitative similarities exist in the long-term asymptotic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号