首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
使用接触角、原子力显微镜(AFM)、静电力显微镜(EFM)和傅里叶变换红外(FTIR)光谱对辛基三乙氧基硅烷(C8TES)/十八烷基三氯硅烷(OTS)均相混合自组装单分子膜(SAM)及其形成过程中样品表面的润湿性、表面形貌、表面电势和膜内分子的有序度进行了表征,对采用分步法利用C8TES分子空间位阻制备C8TES/OTS均相混合SAM的反应机制进行了研究.结果表明,C8TES/OTS均相混合SAM表面接触角为105°,样品表面平整、光滑;对样品表面电势进行分析后发现,混合SAM表面电势分布均匀,电势频率分布为典型的正态分布;在均相混合SAM的形成过程中,样品表面电势的分布始终十分均匀,电势频率分布均为典型的正态分布;C8TES/OTS均相混合SAM是一种具有上下两层分子排列密度不同的膜结构的单分子膜,其内部结构至少在500 nm×500 nm到20μm×20μm尺度上是高度均匀一致的,膜内没有明显的特征结构,具有典型的均相混合SAM特征.  相似文献   

2.
用作“表面离子”的钌螯合物Ru(dpphen)32+与脂肪酸类成膜分子以1:2混合时能够得到稳定的混合单分子膜.以十八烷基三氯硅烷(octadecayl trichloro silane, OTS)分子部分取代Ru(dpphen)32+,得到功能分子组份可控的混合单分子膜.研究表明,OTS分子在纯水表面上可以形成交联网状单分子膜结构,混入硬脂酸(SA)分子后,网状结构逐渐被破坏.SA含量增加,破坏的程度就增大,直至SA/OTS为3:1时,完全没有网状交联结构,形成可以用来沉积LB膜的均匀致密的单分子膜.表面离子Ru(dpphen)32+与OTS和SA一起构成三组份混合单分子膜,OTS和Ru(dpphen)32+为表面离子.单分子膜中混有Ru(dpphen)32+分子,可以有效地阻止OTS的交联发生,同时Ru(dpphen)32+/SA基团与OTS/SA基团是均匀共混的.改变Ru(dpphen)32+/SA基团与OTS/SA基团的混合比,即可以做到Ru(dpphen)32+的组份精确可控,得到可用来沉积LB膜的均一、稳定的单分子膜.  相似文献   

3.
OTS自组装单分子膜形成过程的AFM研究   总被引:1,自引:0,他引:1  
研究表明,十八烷基三氯硅烷(octadecyltrichlorosilane,OTS)分子能够在羟基固体基(hydroxylicsubstrate)表面上通过自组装方式形成单分子膜’‘’.这一现象一经发现,便因其在众多研究领域中具有重要的应用价值而得到广泛的关注.但是迄今为止,对OTS在羟基因体基表面上形成自组装单分子膜的反应机理仍不十分清楚,文献中存在许多不同的观点.近年来,原子力显微镜(AtomicForceMicroscope,AFM)技术“‘在众多研究领域中获得了广泛的应用.运用AFM不仅可以获得样品表面纳米级三维结构信息,而且随着实验技术的不断进步,AF…  相似文献   

4.
氟硅烷自组装单分子膜的制备及其摩擦学性能   总被引:3,自引:0,他引:3  
利用分子自组装技术制备了全氟辛酰胺丙基硅烷单分子膜,用X射线光电子能谱(XPS)对组装膜的表面元素进行了表征;接触角测试表明,该组装膜具有很好的疏水疏油性,其对水的接触角高达105°,对正十六烷的接触角为50°.摩擦磨损实验结果表明,全氟辛酰胺丙基硅烷自组装单分子膜可以大大降低基片的摩擦系数,使载玻片的摩擦系数从0.85左右降低到0.14左右,而且低负荷下具有很好的耐磨性.  相似文献   

5.
运用原子力显微镜研究了十八烷基三氯硅烷在玻璃表面自组装形成单分子膜的过程.通过对样品表面的显微图像、表面平均粗糙度及前进接触角的测量分析,揭示了自组装单分子膜在玻璃表面的生长规律,并探索反应初期玻璃表面的吸附特点.  相似文献   

6.
氟硅烷自组装单分子膜的制备及其摩擦学性能   总被引:5,自引:0,他引:5  
利用分子自组装技术制备了全氟辛酰胺丙基硅烷单分子膜,用X射线光电子能谱(XPS)对组装膜的表面元素进行了表征;接触角测试表明,该组装膜具有很好的疏水-疏油性,其对水的接触角高达105°,对正十六烷的接触角为50°.摩擦磨损实验结果表明,全氟辛酰胺丙基硅烷自组装单分子膜可以大大降低基片的摩擦系数,使载玻片的摩擦系数从0.85左右降低到0.14左右,而且低负荷下具有很好的耐磨性.  相似文献   

7.
采用反应离子刻蚀技术在Si(100)表面加工微米级圆柱阵列, 采用自组装技术分别制备了3种硅烷自组装分子膜. 结果表明, 采用反应离子刻蚀构建出的4种微米级圆柱阵列结构规整, 其直径为5 μm, 高度为10 μm, 间距为15~45 μm. 沉积自组装分子膜后, 试样表面的水接触角显著增大, 其中沉积1H,1H,2H,2H-全氟癸基三氯硅烷(FDTS)自组装分子膜接触角最大, 1H,1H,2H,2H-全氟辛烷基三氯硅烷(FOTS)次之, 三氯十八硅烷(OTS)最小. 测得的接触角大于150°时接近Cassie方程计算的接触角, 而小于150°时接近Wenzel方程计算的接触角. 改变圆柱阵列的间距和选择不同的自组装分子膜, 可以控制表面接触角的大小. 原子力显微镜(AFM)观测结果显示, 沉积自组装分子膜可以产生纳米级的团簇. 由微米级圆柱阵列和纳米级自组装分子膜构成的表面结构使Si试样表面接触角最大可达156.0°.  相似文献   

8.
以OTS自组装单分子膜为探针研究TiO2液相空穴氧化机理   总被引:1,自引:0,他引:1  
通过引入十八烷基三氯硅烷(OTS)自组装单分子膜作为氧化反应的探针, 在排除反应物的吸附和扩散的条件下研究溶胶-凝胶制备的TiO2薄膜表面光催化空穴氧化初始过程. 研究结果表明, 在紫外光照下, 水溶液中OTS部分覆盖的TiO2表面能够很快从憎水变成亲水. 存在空穴捕获剂后, TiO2表面OTS自组装单分子膜碳链的脱除受到明显抑制, 水接触角随光照时间变化非常小; 而水中羟基自由基捕获剂或者F-的存在则对TiO2表面OTS自组装单分子膜碳链的脱除几乎无影响. 这表明, 空穴氧化在TiO2表面OTS自组装单分子膜碳链的脱除中占主要地位.  相似文献   

9.
十八烷基三氯硅烷自组装膜对45#钢在盐酸中的缓蚀作用   总被引:1,自引:0,他引:1  
用十八烷基三氯硅烷(OTS)在45#钢表面制备了自组装单分子膜(SAMs)。运用金相显微镜分析了钢表面的OTS-SAMs的形貌;由失重法和极化曲线研究了不同浓度及组装时间的OTS-SAMs在0.5mol/L盐酸溶液中对钢缓蚀性能的影响。结果显示,OTS的最佳组装浓度为0.15mmol/L,且当组装时间达12h时自组装已基本稳定。从极化曲线得出,OTS是一种以抑制阳极腐蚀为主的混合型抑制剂。  相似文献   

10.
微米/纳米结构对氟硅烷修饰氧化铝表面疏水性能的影响   总被引:2,自引:1,他引:2  
以多孔氧化铝膜为基板,用NaOH溶液进行化学腐蚀,控制适当的条件,得到氧化铝微米/纳米表面结构.用氟硅烷分别修饰光滑氧化铝膜、多孔氧化铝膜及其微米/纳米结构表面,进行接触角测试、XPS成分分析和SEM结构表征.结果表明,氟硅烷修饰的微米/纳米结构表面对水的接触角(149°±2°)比光滑表面(101°±1°)和纳米孔洞结构表面(141°±2°)都高.  相似文献   

11.
Hydrophobic, methyl-terminated self-assembled monolayer (SAM) surfaces can be used to reduce friction. Among methyl-terminated SAMs, the frictional properties of alkanethiol SAMs and silane SAMs have been well-studied. In this research, we investigated friction of methyl-terminated n-hexatriacontane (C36) SAM and compared its friction properties with the alkanethiol and silane SAMs. Alkane SAM does not have an anchoring group. The alkane molecules stand on the surface by physical adsorption, which leads to a higher surface mobility of alkane molecules. We found that C36 SAM has a higher coefficient of friction than that of octadecyltrichlorosilane (OTS) silane. When an atomic force microscope (AFM) tip was swiped across the alkane SAM with a loading force, we found that the alkane SAM can withstand the tip loading pressure up to 0.48 GPa. Between 0.48 and 0.49Ga, the AFM tip partially penetrated the SAM. When the tip moved away, the deformed SAM healed and maintained the structural integrity. When the loading pressure was higher than 0.49 GPa, the alkane SAM was shaved into small pieces by the tip. In addition, we found that the molecular tilting of C36 molecules interacted with the tribological properties of the alkane SAM surface. On one hand, a higher loading force can push the rod-like alkane molecules to a higher tilting angle; on the other hand, a higher molecular tilting leads to a lower friction surface.  相似文献   

12.
This report describes a technique that used mixed self-assembled monolayer (SAM) as a model surface to evaluate the effect of steric hindrance on the SAM packing quality and its platelet compatibility. Two series of binary mixed SAMs were formed by mixing the bulky terminated alkanethiol (HS(CH2)10PO3H2) with a smaller terminated one (HS(CH2)9CH3 and HS(CH2)11OH) respectively. Surface characterization results showed the hydrophilicity on these two series of mixed SAMs changed with the solution mole fraction of PO3H2 terminated thiol, chi(PO3H2,soln), and reached to a nearly constant value as chi(PO3H2,soln) was 0.6 for PO3H2+CH3 SAM and 0.4 for PO3H2+OH SAM. This finding should be due to the gradual saturation of surface PO3H2 functionality on these mixed SAMs. The XPS analysis indicated the addition of the CH3 and OH terminated thiol could reduce the steric hindrance effect of PO3H2 functionality on monolayer formation and, henceforth, improve the SAM packing quality. In vitro platelet adhesion assay revealed the platelet compatibility on the PO3H2+OH SAMs was better than that on the PO3H2+CH3 and the pure PO3H2 ones. Moreover, the PO3H2+OH SAM with a low chi(PO3H2,soln) value exhibited the least platelet activating property of these two mixed SAM systems. These findings suggested that material's surface wettability and surface charge density should act collectively in affecting its platelet compatibility.  相似文献   

13.
Self-assembled monolayers (SAMs) of thienyl-functionalized n-alkyltrichlorosilane (11-(3-thienyl)undecyltrichlorosilane [TUTS]) have been prepared by adsorption from solution and characterized by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact angle measurements, ellipsometry, and scanning electron microscopy (SEM). Using contact angle and SEM measurements, the film preparation protocol was optimized, resulting in reproducible SAM formation with no adverse deposition of polysiloxane particles. XPS and ellipsometry studies confirmed the existence of SAM formation. AFM results show a smooth and homogeneous SAM, with surface roughness of Ra≤0.2 nm, which is slightly higher than the corresponding values for octadecyltrichlorosilane (OTS) SAMs. Such thiophene-based SAM surfaces can be used for surface-initiated polymerization of thiophene. The resulting formed polythiophene layers at non-compatible surfaces offer some practical applications in manufacturing [W. Plieth, A. Fikus, D. Appelhans, H.-J. Adler, German Patent Application No. 2661977 (1998); D. Appelhans, D. Ferse, H.-J. Adler, A. Fikus, W. Plieth, B. Aldolphi et al., J. Electrochem. Soc. (accepted)].  相似文献   

14.
One application of octadecyltrichlorosilane (OTS) self‐assembled monolayers (SAMs) is its use as thin film resists. In this work, we demonstrated that OTS SAMs can be reliable resists for organo‐metallic chemical vapor deposition (OMCVD) grown gold nanoparticles (Au NPs). In optical sensing applications based on Au NPs, one candidate system consists of patterned OTS SAMs and precisely grown OMCVD Au NPs for achieving a high sensitivity. As an initial step, the OTS SAMs need to perfectly resist the OMCVD Au NP growth. Hence the optimized formation of the OTS SAMs affected by different assembly times and baking temperatures was studied by contact angle, ellipsometry, XPS, SEM, and atomic force microscopy (AFM). To demonstrate the ability of the OTS SAMs to resist OMCVD Au NP growth, the OMCVD process was carried out on two sets of samples: OTS SAMs fabricated under optimized conditions on one set and the other set without OTS SAMs. High‐resolution XPS, RBS, SEM, and ultraviolet‐visible (UV‐Vis) spectroscopy were applied to study the growth of Au NPs on the samples with and without OTS SAM resists. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Kelvin probe force microscopy (KPFM) and atomic force microscopy (AFM) are employed to probe the surface potential and topography of octadecyltrichlorosilane [OTS, CH3(CH2)17SiCl3] self-assembled monolayers (SAMs) on oxidized Si(100) and polycrystalline silicon surfaces as a function of deposition temperature and substrate roughness with particular attention paid to the monitoring of SAM adsorption on highly rough surfaces. In these studies, it is found that the surface potential magnitude of the adsorbed layer is larger for monolayers formed in the liquid-condensed (LC) phase than for those formed in the liquid-expanded (LE) phase. Experiments on individual islands in the LC phase show that surface potential and monolayer thickness increase with increasing island size; islands larger than about 1.5 microm reach maximum potential and height values of 48+/-4 mV and 2.7+/-0.1 nm, with respect to the underlying oxidized surface. It is also shown that KPFM is suitable for the study of monolayer adsorption on polycrystalline surfaces, for which preexisting surface texture makes the use of traditional scanning probe techniques for molecular recognition difficult. In these scenarios it is shown that OTS growth occurs preferentially along grain boundaries in fingerlike patterns having a molecular arrangement comparable to that of LC phase islands on atomically smooth silicon. These findings indicate that surface potential measurements provide a highly accurate, local means of probing monolayer morphology on rough surfaces encountered in many applications.  相似文献   

16.
Single-component and mixed self-assembled monolayers (SAMs) of one- and three-ring semirigid tetrahydro-4H-thiopyran end-capped oligo(cyclohexylidenes)-that is, thiopyran (1), 4-(4-cyclohexylidene-cyclohexylidene)tetrahydro-4H-thiopyran (2), and 4-(tetrahydro-4H-thiopyran-4-cyclohexylidene-4'-ylidene)tetrahydro-4H-thiopyran (3)--on Au(111) substrates have been prepared and studied by cyclic voltammetry (CV), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). It was found that the shortest adsorbate 1 more readily forms a SAM than 2 or 3. Notwithstanding, the SAMs of 2 or 3 are thermodynamically more stable due to favorable intermolecular attractions. Holes were made with the AFM tip establishing tilt angles of 30-50 degrees with respect to the surface normal for all SAMs. STM imaging showed well-ordered, line-shaped packing patterns with molecular resolution for the SAM of 2. Similar patterned structures were not observed for 1 and 3. Mixed SAMs were prepared by exposing a SAM of 1 to ethanol solutions of either 2 or 3. STM imaging revealed that domains of molecules of 2 or 3 amidst a monolayer of 1 are formed in both cases. Whereas in the mixed SAM of 1 and 2 the domains are irregularly shaped, circular islands of uniform size are found in the mixed SAM of 1 and 3.  相似文献   

17.
Heparin was covalently immobilized onto a silicon surface by two different methods, carbodiimide-based immobilization and photo-immobilization. In the former method, a (3-aminopropyl) trimethoxysilane (APTMS) self-assembled monolayer (SAM) or multilayer was first coated onto the silicon surface as the bridging layer, and heparin was then attached to the surface in the presence of water-soluble carbodiimide. In the latter method, an octadecyltrichlorosilane (OTS) SAM was coated on the silicon surface as the bridging layer, and heparin was modified by attaching photosensitive aryl azide groups. Upon UV illumination, the modified heparin was then covalently immobilized onto the surface. The hydrophilicity of the silicon surface changed after each coating step, and heparin aggregates on APTMS SAM and OTS SAM were observed by atomic force microscopy (AFM). In vitro haemocompatibility assays demonstrated that the deposition of APTMS SAM, APTMS multilayer and OTS SAM enhanced the silicon's haemocompatibility, which was further enhanced by the heparin immobilization. There is no evident distinction regarding the haemocompatibility between the heparin-immobilized surfaces by both methods. However, heparin on silicon with APTMS SAM and multilayer as the bridging layers is very unstable when tested in vitro with a saline solution at 37 °C, due to the instability of APTMS SAM and multilayer on silicon. Meanwhile, photo-immobilized heparin on silicon with OTS SAM as the bridging layer showed superb stability.  相似文献   

18.
Self-assembled monolayers (SAMs), a molecular-level assembly that forms spontaneously, provide a vehicle for investigating specific interactions at interfaces. This is particularly true for mixed SAMs that are composed of organosilanes with different chain lengths and/or chemical functionalities because they offer an adjustable surface for constructing 3D structures containing a variety of moieties. We recently observed that coadsorbed monolayers with different organosilanes on a Si wafer were separated into several tens or hundreds of nanometer domains that were rich in individual components. Several organosilanes, such as octadecyltrichlorosilane (OTS), octadecyltrimethoxysilane (OTMS), (3-mercaptopropyl)trimethoxysilane (MPTMS), and (3-aminopropryl)trimethoxysilane (APTMS), were used for regional separation. In this study, we propose a stepwise deposition method, namely, the deposition of a second siliane on a SAM substrate that creates intentional defects in the first silane. The surface morphologies were adjusted by the deposition sequence and immersion time of the silanes. As a result, a mixed SAM prepared by the proposed method showed effectively functionalized films compared to that prepared by the one-step method.  相似文献   

19.
This work reports a novel and reproducible route for the successful modification of the surface of titanium (Ti) with self-assembled monolayers (SAMs). By electropolishing the surface of Ti, suitable physical/chemical surface properties were obtained for adequate growth of OctadecylTrichloroSilane (OTS) based SAM. Optimum conditions to achieve a well-organized and densely packed OTS film were also determined by monitoring the effect of different parameters including time, concentration, and temperature for OTS adsorption. The optimum conditions for the formation of an OTS-SAM were found to be upon immersion of the electropolished Ti substrate in a 10mM OTS solution at 10°C for 24h. Furthermore, multiple growth regimes for the formation of OTS-SAM on electropolished Ti surface were observed. The kinetics for the self-assembly were fast at the beginning of OTS adsorption, but rapidly slowed down after 10h of immersion, i.e. during the densification process of the film at the surface of Ti. In addition, the growth behavior was found to be random as opposed to the island growth behavior usually observed with OTS at the surface of silica. The successful implementation of OTS-SAM was further investigated through the immobilization and delivery of a model drug and the OTS monolayer showed clear abilities in drug delivery with an initial burst release up to 5days followed by a sustained release up to 26days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号