首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z. Dohnálek 《Surface science》2006,600(17):3461-3471
Thin Pd films (1-10 monolayers, ML) were deposited at 35 K on a Pt(1 1 1) single crystal and on an oxygen-terminated FeO(1 1 1) monolayer supported on Pt(1 1 1). Low energy electron diffraction, Auger electron spectroscopy, and Kr and CO temperature programmed desorption techniques were used to investigate the annealing induced changes in the film surface morphology. For growth on Pt(1 1 1), the films order upon annealing to 500 K and form epitaxial Pd(1 1 1). Further annealing above 900 K results in Pd diffusion into the Pt(1 1 1) bulk and Pt-Pd alloy formation. Chemisorption of CO shows that even the first ordered monolayer of Pd on Pt(1 1 1) has adsorption properties identical to bulk Pd(1 1 1). Similar experiments conducted on FeO(1 1 1) indicate that 500 K annealing of a 10 ML thick Pd deposit also yields ordered Pd(1 1 1). In contrast, annealing of 1 and 3 ML thick Pd films did not result in formation of continuous Pd(1 1 1). We speculate that for these thinner films Pd diffuses underneath the FeO(1 1 1).  相似文献   

2.
The growth of thin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) films on a 3C-SiC(0 0 1)c(2 × 2) substrate has been studied by means of photoelectron spectroscopy (PES) and atomic force microscopy (AFM). In the first monolayer the molecules interact with the substrate mainly through the O atoms in the end groups of the molecule. The O atoms have a higher binding energy in the first molecular layer compared to the following layers. No chemical shifts are observed in the Si 2p spectra or in the C 1s spectra from the perylene core of the molecules. From the VB spectra and LEED pattern we conclude that the substrate remains in the c(2 × 2) reconstruction after PTCDA deposition. For thicker films a Stranski-Krastanov film growth was observed with flat lying molecules relative to the substrate.  相似文献   

3.
The epitaxial growth of Pd adlayers electrochemically deposited onto Au(1 0 0) has been studied by LEED, RHEED and AES. For the first 6 ML, the Pd deposits grow pseudomorphically on Au(1 0 0) with a lateral expansion of 4.5% with respect to bulk Pd. The strain in the expanded commensurate (1 × 1) Pd layers on Au(1 0 0) begins to be relieved at the Pd coverage between 6 and 9 ML range by formation of a compressed Pd film with respect to Au(1 0 0) surface and the compression increases continuously with thickness. At ca. 20 ML Pd the lattice constant of the film approaches to the bulk Pd and three-dimensional Pd islands develop since around 30 ML coverage. No superstructure due to the Pd-Au surface alloy can be found for coverages from monolayer up to 30 ML Pd on Au(1 0 0). A c(2 × 2) phase has been observed on the Pd-deposited Au(1 0 0) electrodes, which is ascribed to an ordered Cl adlayers adsorbed on Pd adlayers rather than a Pd-Au surface alloy.  相似文献   

4.
We performed scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) experiments for Dy adsorbed on Mo(1 1 2) in the monolayer regime in order to clarify the concentration dependent reordering of the surface glass that exists for coverages above 0.58 of a monolayer (ML) after annealing to temperatures higher than 400 K. The partial reaction model developed earlier is corroborated. The Dy defect structure formed initially in Dy-Mo surface alloy acts as nucleation sites for Dy so that clusters with a wide distribution of lateral distances are formed, as found in particular at a coverage of 0.28 ML. The change in bonding character at coverages above 0.58 ML leads to reordering of the defects and the concentration dependent modulation of the adsorbed Dy layers. Examples at coverages of 0.7, 0.9 and 1.15 ML are shown and compared.  相似文献   

5.
Matthias Koch 《Surface science》2006,600(18):3586-3589
Nuclear magnetic resonance (NMR) is performed on monolayer (ML) amounts of adsorbed 129Xe on a single crystal substrate. The inherently low sensitivity of NMR is overcome by using highly nuclear spin polarized 129Xe that has been produced by optical pumping. A polarization of 0.8 is regularly achieved which is 105 times the thermal (Boltzmann) polarization. The experiments are performed with a constant flux of xenon atoms impinging on the surface, typically 4 ML/s. The chemical shift (σ) of 129Xe is highly sensitive to the Xe local environment. We measured profoundly different shifts for the Xe bulk, for the surface of the Xe bulk, and for Xe on CO/Ir(1 1 1). The growth of the bulk is seen in a phase transition like change of σ as a function of temperature at constant Xe flux. At temperatures where no bulk forms at a flux of 4 ML/s, the xenon exchange rate was measured by a spin inversion/recovery method. The exchange time of Xe is found to be 0.24 s at 63.4 K and 64.4 K and somewhat longer at 61.2 K. An analysis is given involving the desorption out of the second layer and fast mixing of first and second layer atoms at these temperatures.  相似文献   

6.
Two different growth modes of manganese silicide are observed on Si(1 0 0) with scanning tunneling microscopy. 1.0 and 1.5 monolayer Mn are deposited at room temperature on the Si(1 0 0)-(2 × 1) substrate. The as-grown Mn film is unstructured. Annealing temperatures between room temperature and 450 °C lead to small unstructured clusters of Mn or MnxSiy. Upon annealing at 450 °C and 480 °C, Mn reacts chemically with the Si substrate and forms silicide islands. The dimer rows of the substrate become visible again. Two distinct island shapes are found and identified as MnSi and Mn5Si3.  相似文献   

7.
The consequences of Ge deposition on Br-terminated Si(1 0 0) were studied with scanning tunneling microscopy at ambient temperature after annealing at 650 K. One monolayer of Br was sufficient to prevent the formation of Ge huts beyond the critical thickness of 3 ML. This is possible because Br acts as a surfactant whose presence lowered the diffusivity of Ge adatoms. Hindered mobility was manifest at low coverage through the formation of short Ge chains. Further deposition resulted in the extension and connection of the Ge chains and gave rise to the buildup of incomplete layers. The deposition of 7 ML of Ge resulted in a rough surface characterized by irregularly shaped clusters. A short 800 K anneal desorbed the Br and allowed Ge atoms to reorganize into the more energetically favorable “hut” structures produced by conventional Ge overlayer growth on Si(1 0 0).  相似文献   

8.
The structures of the lowest total energy for small AgN clusters with N = 2-20, which are grown on Ag(1 1 1) and Ni(1 1 1) surfaces, have been determined using a combination of the embedded-atom method and the basin-hopping algorithm. It is found that the particularly stable Ag clusters with N<18 have similar geometries on both surfaces when comparing clusters of the same size. On the other hand, the geometries of the less stable Ag clusters in the same size range differ for the two surfaces. From N?18, the sizes of the particularly stable structures are different for the two different substrates. Due to the large size mismatch of the two types of atoms it is energetically unfavorable for Ag to form a pseudomorphic monolayer structures on Ni(1 1 1) and there is considerable strain produced at the interface. The effect of this strain and the increased adatom-substrate interactions lead to irregular and elongated structures of the adsorbed Ag clusters.  相似文献   

9.
The initial growth and the stability of Fe layers on the Mo(1 1 1) surface was studied with Auger electron spectroscopy, low energy electron diffraction, scanning tunneling microscopy and thermal desorption spectroscopy. At room temperature at least the first two monolayers grow layer-by-layer. The first layer is stable up to about 1200 K. Excess Fe starts to agglomerate at about 400 K and forms with increasing temperature thick flat-top islands which start to sublime at a somewhat below 1200 K. A strong decrease of the adsorption energy with coverage was found in the first monolayer. No {2 1 1} or { 1 1 0} micro-faceting could be seen at any coverage upon annealing.  相似文献   

10.
Low-energy ion scattering with monolayer sensitivity was applied to investigate ultrathin films of zinc on Pd(1 1 1). Uptake curves taken at 150 K indicate the simultaneous growth of multilayers with negligible interlayer transport. Annealing experiments for two-monolayer films reveal a rapid decrease in the zinc content on the surface layer at temperatures above 300 K, forming a metastable state with a Pd:Zn surface ratio of approx. 1:1 in the temperature region between 400 and 550 K. This state is most easily explained as a slightly buckled p(2 × 1)-PdZn surface alloy, with Zn atoms located approx. 0.25 Å above their Pd counterparts.  相似文献   

11.
A. Khatiri 《Surface science》2004,549(2):143-148
Exposure of the As-terminated GaAs(0 0 1)-c(4 × 4) reconstructed surface to atomic hydrogen (H) at different substrate temperatures (50-480 °C) has been studied by reflection high-energy electron diffraction (RHEED) and scanning tunnelling microscopy (STM). Hydrogen exposure at low temperatures (∼50 °C) produces a disordered (1 × 1) surface covered with AsHx clusters. At higher temperatures (150-400 °C) exposure to hydrogen leads to the formation of mixed c(2 × 2) and c(4 × 2) surface domains with H adsorbed on surface Ga atoms that are exposed due to the H induced loss of As from the surface. At the highest temperature (480 °C) a disordered (2 × 4) reconstruction is formed due to thermal desorption of As from the surface. The results are consistent with the loss of As from the surface, either through direct thermal desorption or as a result of the desorption of volatile compounds which form after reaction with H.  相似文献   

12.
We present the results of scanning tunneling microscopy (STM) and photoemission spectroscopy (PES) of the Ta/Si(1 1 1)-7 × 7 system after deposition of Ta at substrate temperatures from 300 to 1250 K. The coverage of Ta varied from 0.05 up to 2.5 of a monolayer (ML). STM shows that at 300 K and coverage less than 1 ML, a disordered chemisorbed phase is formed. Deposition on a hot surface (above 500 K) produces round 3D clusters randomly distributed on the surface. Cluster height and their diameter are found to change drastically with annealing temperature and the Ta coverage. Analysis of photoemission data of the Si 2p core levels shows that at room temperature and at coverage ?1 ML core level binding energy shifts and intensity variations of Si surface related components are observed, which clearly indicate that the reaction starts already at 300 K. Shifts in the binding energy, changes of the peak shapes and intensity of the Ta 4f doublet at higher temperatures can be explained by the formation of stable silicide on the surface.  相似文献   

13.
K.L. Man  M.S. Altman 《Surface science》2006,600(5):1060-1070
The growth and oxidation of Cr films on the W(1 0 0) surface have been studied with low energy electron microscopy (LEEM) and diffraction (LEED). Cr grows in a Stranski-Krastanov (SK) mode above about 550 K and in a kinetically limited layer-by-layer mode at lower temperature. Stress relief in the highly strained pseudomorphic (ps) Cr film appears to be achieved by the formation of (4 × 4) periodic inclusions during the growth of the third layer between 575 and 630 K and by growth morphological instabilities of the third layer at higher temperature. Kinetic or stress-induced roughening is observed at lower temperature. In the SK regime, three-dimensional (3D) Cr islands nucleate after the growth of three Cr layers. 3D island nucleation triggers dewetting of one layer from the surrounding Cr film. Thus, two ps Cr layers are thermodynamically stable. However, one and two layer ps Cr films are unstable during oxidation. 3D clusters, that produce complex diffraction features and are believed to be Cr2O3, are formed during oxidation of one Cr layer at elevated temperature, T ? 790 K. The single layer Cr film remains intact during oxidation at T ? 630 K. 3D bulk Cr clusters are formed predominantly during oxidation of two ps Cr layers.  相似文献   

14.
Lattice-resolution images of single-crystal α-alumina (sapphire) (0 0 0 1) surfaces have been obtained using contact-mode AFM under ambient conditions. It was found that the hexagonal surface lattice has a periodicity of 0.47 ± 0.11 nm, which is identical to that reported previously when the same surface was imaged in water. Large lattice corrugations (as high as 1 nm) were observed, but were concluded to be imaging artifacts because of the strong friction which causes additional deflection of the cantilever. The additional deflection of the cantilever is registered by the detector of the optical beam-deflection AFM resulting in an overestimation of the height at each lattice point. Abrupt changes were also resolved in the topography including honeycomb patterns and a transition from 2D lattices to 1D parallel stripes, with scanning direction. These phenomena can be explained by the commensurate sliding between the tip and sapphire surface due to the strong contact force.  相似文献   

15.
M. Busch  M. Gruyters  H. Winter 《Surface science》2006,600(13):2778-2784
The growth, structure, and morphology of ultrathin iron oxide layers formed on a Fe(1 1 0) single crystal surface are investigated by Auger electron spectroscopy, low energy electron diffraction, and grazing ion scattering. For Fe oxidation by atomic instead of molecular oxygen, the gas exposure can be reduced by almost two orders of magnitude because surface sticking and dissociation are not limiting the growth process. A well-ordered FeO(1 1 1) film with low defect density is only obtained with atomic oxygen. Compared to the bulk, the FeO lattice is laterally compressed by about 5-6% resulting in an in-plane oxygen (Fe) nearest-neighbor distance of 2.87 Å. Independent of the preparation method, long-range structural order is poor if the oxide film thickness is increased to 3-5 layers. This is attributed to the relatively large lattice mismatch between FeO(1 1 1) and Fe(1 1 0).  相似文献   

16.
Ordering of submonolayer iron phthalocyanine (FePc) molecules deposited on Ag(1 1 1) was investigated using scanning tunneling microscopy. The room temperature deposition of FePc alone, without any annealing, results in no ordered overlayers. However, posterior annealing the substrate to 475 K leads to the formation of a two-dimensional oblique lattice with the lattice constants of 16.2 ± 0.3 Å and the angle of 78 ± 1° between them. The resulting FePc lattice is commensurate to the substrate lattice. In addition, the nearest neighbor distance in the lattice is significantly increased through a distinctive molecular orientation of the FePc molecules within the unit cell. The commensurate lattice with a large intermolecular distance is in sharp contrast to that observed from a close-packed square lattice that many other metallo-phthalocyanine molecules often self-assemble into. A possible reasoning behind this intriguing structure is discussed.  相似文献   

17.
T.E. Jones  P. Bailey 《Surface science》2006,600(10):2129-2137
The initial growth of Au on Ni{1 1 1} is strongly influenced by the 15.7% difference in bulk lattice parameter between the two fcc metals. At 400 K, the first monolayer of Au grows on the Ni{1 1 1} surface as a (9 × 9) overlayer with 8 Au-Au spacings being equivalent to 9 Ni-Ni spacings. Umezawa et al. [Physical Review B 57 (1998) 8842; Surface Science 426 (1999) 225] reported that the growth of Au overlayers can occur either via a reverse (R)-mode (i.e., incorporating a stacking fault at the Au-Ni interface) or a normal (N)-mode—the relative proportion of each mode being strongly sensitive to growth temperature. Using the technique of medium energy ion scattering, we examine the growth of Au on Ni{1 1 1} at 400 K. We conclude that, at this deposition temperature, there is a preference for growth via the R-mode (74 ± 9%). In addition, we find that the Au overlayer has a considerably higher density than bulk Au being contracted isotropically by 3.1% in the {1 1 1} plane and also by ∼7% perpendicular to the {1 1 1} plane. We discuss possible explanations for our findings.  相似文献   

18.
The growth and morphology of ultra-thin CeO2(1 1 1) films on a Cu(1 1 1) substrate were investigated by means of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). The films were grown by physical vapor deposition of cerium in an oxygen atmosphere at different sample temperatures. The preparation procedure is based on a modification of a previous method suggested by Matolin and co-workers [1], involving growth at elevated temperature (520 K). Here, LEED shows good long range ordering with a “(1.5 × 1.5)” superstructure, but STM reveals a three-dimensional growth mode (Vollmer-Weber) with formation of a closed film only at larger thickness. Using a kinetically limited growth process by reactive deposition at low sample temperatures (100 K) and subsequent annealing, we show that closed layers of ceria with atomically flat terraces can be prepared even in the regime of ultra-thin films (1.5 ML). Closed and atomically flat ceria films of larger thickness (3 ML) are obtained by applying a multistep preparation procedure, in which successive ceria layers are homoepitaxially grown on this initial film. The resulting overlayers show strong similarities with the morphology of CeO2(1 1 1) single crystal surfaces, suggesting the possibility to model bulk ceria by thin film systems.  相似文献   

19.
D.B. Dańko 《Surface science》2006,600(11):2258-2267
The influence of temperature on the growth process of ultra-thin Ag and Au layers on the Mo(1 1 1) surface was investigated. At 300 K growth of the Stranski-Krastanov type was found for Ag; for Au growth of the monolayer plus simultaneous multilayers type was found, where a base layer is one physical layer. The first three geometrical adsorbed layers for Ag are thermally stable. For annealed Au layers triangle features with base side length from 15 to 35 Å were formed for θ < 6 monolayer (ML), and for θ > 6 ML part of the Au formed a flat adlayer with Au atoms grouped in equilateral triangles with side length 7 Å. The presence of Au layers does not cause faceting, layers are not smooth which could be caused by the fact that Au does not wets the substrate. For Ag thick layers reversible wetting/non-wetting transition was observed at 600 K. Ag layers on Mo(1 1 1) surface did not lead to faceting.  相似文献   

20.
The vertical bonding distance of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) above the Au(1 1 1) surface has been measured by the normal incidence X-ray standing wave (NIXSW) technique. The carbon skeleton of PTCDA has a vertical distance of D = (3.27 ± 0.02) Å to the Au(1 1 1) substrate. This distance corresponds very nearly to the sum of the van der Waals radii of carbon and gold, suggesting the adsorption to be a physisorptive one. In contrast, the PTCDA/Ag(1 1 1) interface which according to spectroscopic data follows the standard model of chemisorption very closely, shows a considerably smaller bonding distance of D = (2.86 ± 0.01) Å [A. Hauschild, K. Karki, B.C.C. Cowie, M. Rohlfing, F.S. Tautz, M. Sokolowski, Phys. Rev. Lett. 94 (2005) 036106, comment: Rurali et al., Phys. Lett. 95 (2005) 209205, reply: Phys. Rev. Lett. 95 (2005) 209206]. The different vertical adsorption heights of PTCDA on gold and silver are discussed in relation to the different bonding mechanisms on both noble metal surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号