首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Khatiri 《Surface science》2004,549(2):143-148
Exposure of the As-terminated GaAs(0 0 1)-c(4 × 4) reconstructed surface to atomic hydrogen (H) at different substrate temperatures (50-480 °C) has been studied by reflection high-energy electron diffraction (RHEED) and scanning tunnelling microscopy (STM). Hydrogen exposure at low temperatures (∼50 °C) produces a disordered (1 × 1) surface covered with AsHx clusters. At higher temperatures (150-400 °C) exposure to hydrogen leads to the formation of mixed c(2 × 2) and c(4 × 2) surface domains with H adsorbed on surface Ga atoms that are exposed due to the H induced loss of As from the surface. At the highest temperature (480 °C) a disordered (2 × 4) reconstruction is formed due to thermal desorption of As from the surface. The results are consistent with the loss of As from the surface, either through direct thermal desorption or as a result of the desorption of volatile compounds which form after reaction with H.  相似文献   

2.
The adsorption of oxygen and the nanometer-scale faceting induced by oxygen have been studied on Ir(2 1 0). Oxygen is found to chemisorb dissociatively on Ir(2 1 0) at room temperature. The molecular desorption process is complex, as revealed by a detailed kinetic analysis of desorption spectra. Pyramid-shaped facets with {3 1 1} and (1 1 0) orientations are formed on the oxygen-covered Ir(2 1 0) surface when annealed to T?600 K. The surface remains faceted for substrate temperatures T<850 K. For T>850 K, the substrate structure reverts to the oxygen-covered (2 1 0) planar state and does so reversibly, provided that oxygen is not lost due to desorption or via chemical reactions upon which the planar (2 1 0) structure remains. A clean faceted surface was prepared through the use of low temperature surface cleaning methods: using CO oxidation, or reaction of H2 to form H2O, oxygen can be removed from the surface while preserving (“freezing”) the faceted structure. The resulting clean faceted surface remains stable for T<600 K. For temperatures above this value, the surface irreversibly relaxes to the planar state.  相似文献   

3.
Changes in the surface of an oxidized Cu(1 0 0) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The intensity then decreases monotonically as the annealing temperature is increased to ∼600 °C. Experimental probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. The effects of oxygen adsorption on localization of positron surface state wave function and annihilation characteristics are also analyzed. Possible explanation is proposed for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV and O KLL Auger peaks and probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons with changes of the annealing temperature.  相似文献   

4.
In the present work HCl-isopropanol treated and vacuum annealed InP(0 0 1) surfaces were studied by means of low-energy electron diffraction (LEED), soft X-ray photoemission (SXPS), and reflectance anisotropy (RAS) spectroscopies. The treatment removes the natural oxide and leaves on the surface a physisorbed overlayer containing InClx and phosphorus. Annealing at 230 °C induces desorption of InClx overlayer and reveals a P-rich (2 × 1) surface. Subsequent annealing at higher temperature induces In-rich (2 × 4) surface. The structural properties of chemically prepared InP(0 0 1) surfaces were found to be similar to those obtained by decapping of As/P-capped epitaxial layers.  相似文献   

5.
A.P. Farkas  F. Solymosi 《Surface science》2006,600(11):2355-2363
The adsorption and surface reactions of propyl iodide on clean and potassium-modified Mo2C/Mo(1 0 0) surfaces have been investigated by thermal desorption spectroscopy (TPD), X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy (HREELS) in the 100-1200 K temperature range. This work is strongly related to the better understanding of the catalytic effect of Mo2C in the conversion of hydrocarbons. Potassium was found to be an effective promoter: it induced the rupture of C-I bond in the adsorbed C3H7I even at 100 K. The extent of C-I bond scission varied approximately linearly with the concentration of K coverage at the adsorption temperature of 100 K. As revealed by HREELS and TPD measurements the primary products of the dissociation are C3H7 and I. The former one was stabilized by potassium and underwent dehydrogenation and hydrogenation to give propene and propane. The desorption of both compounds is reaction-limited process. A fraction of propyl groups was converted into di-σ-bonded propene, which was stable up to ∼380 K. The coupling reaction of propyl species was also facilitated by potassium and resulted in the formation of hexane and hexene with Tp ∼ 230-250 K. Hydrogen was released with Tp = 390 K, indicative of a desorption limited process. The effect of potassium was explained by the extended electron donation to adsorbed propyl iodide in one hand, and by the direct interaction between potassium and I on the other hand. This was reflected by the shift of the desorption of potassium from the coadsorbed layer at and above 1.0 ML to higher temperature, and by the coincidal Tp values (∼700 K) of potassium and iodine. The formation of KI was also supported by the appearance of a loss feature at 650 cm−1 in the HREEL spectra attributed to a phonon mode of KI.  相似文献   

6.
The diamond (1 0 0) surface with amino terminations is investigated based on density function theory within the generalized gradient approximation. Our calculated negative electron affinity of diamond (1 0 0) surface with hydrogen termination provides a necessary condition for initiating radical reaction. The results display that the ammonia molecule can form stable C-N covalent bonds on the diamond surface. In addition, due to the lower adsorption energy of one amino group binding on diamond surface, single amino group (SAG) model is easy to be realized in experiment with the comparison of double amino group (DAG) model. The adsorbed ammonia molecule will induce acceptor-like gap states with little change of the valence and conduction band of diamond in SAG model. The adsorption mechanism in the formation of ammonia monolayer on H-terminated diamond (1 0 0) surface, and two possible adsorption structures (SAG and DAG) were especially studied.  相似文献   

7.
Oxidation of heated diamond C(100):H surfaces   总被引:2,自引:0,他引:2  
This paper extends a previous study (Pehrsson and Mercer, submitted to Surf. Sci.) on unheated, hydrogenated, natural diamond (100) surfaces oxidized with thermally activated oxygen (O*2). In this paper, the oxidation is performed at substrate temperatures from Tsub=24 to 670°C. The diamond surface composition and structure were then investigated with high resolution electron energy loss spectroscopy (HREELS), Auger electron spectroscopy (AES), electron loss spectroscopy (ELS) and low energy electron diffraction (LEED).

The oxygen coverage (θ) increased in two stages, as it did during oxidation at T<80°C. However, there are fundamental differences between the oxidation of nominally unheated and heated diamond surfaces. This difference is attributed to simultaneous adsorption and rapid desorption of oxygen species at higher temperatures; the desorption step is much slower without heating. The initial oxidation rates were similar regardless of the substrate temperatures, but the peak coverage (θ) was lower at higher temperatures. For example, θ plateaued at 0.4±0.1 ML at 600°C. The lower saturation coverage is again attributed to oxygen desorption during oxidation. Consistent results were obtained on fully oxidized surfaces, which when heated in vacuum to Tsub=600°C, lost 60% of their adsorbed oxygen. ELS revealed few C=C dimers on the oxidized surfaces, and more graphitization than on unheated surfaces. Oxidation at elevated temperatures also increased the carbonyl to ether ratio, reflecting etching-induced changes in the types of surface sites. The carbonyl and C–H stretch frequencies increased with oxygen dose due to formation of higher oxidation states and/or hydrogen bonding between adjacent groups. The oxygen types did not interconvert when the oxidized surfaces were heated in vacuum. Oxygen desorption generated a much more reactive surface than heating-induced dehydrogenation of the smooth, hydrogenated surface.  相似文献   


8.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

9.
We have developed a new electron energy analyzer with a large solid angle of 0.14π, which is comparable to that of cylindrical mirror analyzer. Typical energy resolution was ΔE/E0 ∼ 0.016 for the aperture of 1 mm and central radius of 100 mm, and typical angular resolution was less than 0.5°.  相似文献   

10.
Luminescence characteristics and surface chemical changes of nanocrystalline Mn2+ doped ZnAl2O4 powder phosphors are presented. Stable green cathodoluminescence (CL) or photoluminescence (PL) with a maximum at ∼512 nm was observed when the powders were irradiated with a beam of high energy electrons or a monochromatic xenon lamp at room temperature. This green emission can be attributed to the 4T1 → 6A1 transitions of the Mn2+ ion. Deconvoluted CL spectra resulted in two additional emission peaks at 539 and 573 nm that may be attributed to vibronic sideband and Mn4+ emission, respectively. The luminescence decay of the Mn2+ 512 nm emission under 457 nm excitation is single exponential with a lifetime of 5.20 ± 0.11 ms. Chemical changes on the surface of the ZnAl2O4:Mn2+ phosphor during prolonged electron beam exposure were monitored using Auger electron spectroscopy. The X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition of the possible compounds formed on the surface as a result of the prolonged electron beam exposure. The XPS data suggest that the thermodynamically stable Al2O3 layer was formed on the surface and is possibly contributing to the CL stability of ZnAl2O4:Mn phosphor.  相似文献   

11.
The adsorption and desorption of glycine (NH2CH2COOH), vacuum deposited on a NiAl(1 1 0) surface, were investigated by means of Auger electron spectroscopy (AES), low energy electron diffraction (LEED), temperature-programmed desorption, work function (Δφ) measurements, and ultraviolet photoelectron spectroscopy (UPS). At 120 K, glycine adsorbs molecularly forming mono- and multilayers predominantly in the zwitterionic state, as evidenced by the UPS results. In contrast, the adsorption at room temperature (310 K) is mainly dissociative in the early stages of exposure, while molecular adsorption occurs only near saturation coverage. There is evidence that this molecularly adsorbed species is in the anionic form (NH2CH2COO). Analysis of AES data reveals that upon adsorption glycine attacks the aluminium sites on the surface. On heating part of the monolayer adsorbed at 120 K is converted to the anionic form and at higher temperatures dissociates further before desorption. The temperature-induced dissociation of glycine (<400 K) leads to a series of similar reaction products irrespective of the initial adsorption step at 120 K or at 310 K, leaving finally oxygen, carbon and nitrogen at the surface. AES and LEED measurements indicate that oxygen interacts strongly with the Al component of the surface forming an “oxide”-like Al-O layer.  相似文献   

12.
The relationship between field emission properties and C 1s core level shifts of heavily phosphorus-doped homoepitaxial (1 1 1) diamond is investigated as a function of annealing temperature in order to optimize surface carbon bonding configurations for device applications. A low field emission threshold voltage is observed from surfaces annealed at 800 °C for hydrogen-plasma treated surface, while a low field emission threshold voltage of wet-chemical oxidized surface is observed after annealing at 900 °C. The C 1s core level by X-ray photoelectron spectroscopy (XPS) showed a shoulder peak at 1 eV below the main peak over 800 and 900 °C annealing temperature for hydrogen-plasma treated and wet-chemical oxidized surfaces, respectively. When the shoulder peak intensity is less than 10% of the main peak intensity, lower threshold voltages are observed. This is due to the carbon-reconstruction which gives rise to a small positive electron affinity. By increasing annealing temperature, the shoulder peak ratios also increase, which indicates that a surface graphitization takes place. This leads to higher threshold voltages.  相似文献   

13.
With the aim of comparing initial Ge adsorption and desorption modes on different surface terminations of 4H-SiC(0 0 0 1) faces, 3 × 3, √3×√3R30° (R3) and 6√3×6√3R30° (6R3) reconstructions, of decreasing Si surface richness, have been prepared by standard surface preparation procedures. They are controlled by reflection high energy electron diffraction (RHEED), low energy electron diffraction and photoemission. One monolayer of Ge has been deposited similarly at room temperature on each of these three surfaces, followed by the same set of isochronal heatings at increasing temperatures up to complete Ge desorption. At each step of heating, the structural and chemical status of the Ge ad-layer has been probed. Marked differences between the Si- (3 × 3 and R3) and C-rich (6R3) terminations have been obtained. Ge wetting layers are only obtained up to 400 °C on 3 × 3 and R3 surfaces in the form of a 4 × 4 reconstruction. The wetting is more complete on the R3 surface, whose atomic structure is the closest to an ideally Si-terminated 1 × 1 SiC surface. At higher temperatures, the wetting layer stage transiets in Ge polycrystallites followed by the unexpected appearance on the 3 × 3 surface of a more ordered Si island structure. It denotes a Si clustering of the initial Si 3 × 3 excess, induced by the presence of Ge. A phase separation mechanism between Si and Ge prevails therefore over alloying by Ge supply onto a such Si-terminated 3 × 3 surface. Conversely, no wetting is obtained on the 6R3 surface and island formation of exclusively pure Ge takes place already at low temperature. These islands exhibit a better epitaxial relationship characterized by Ge(1 1 1)//SiC(0 0 0 1) and Ge〈1 1 −2〉//SiC〈1 −1 0 0〉, ascertained by a clear RHEED spot pattern. The absence of any Ge-C bond signature in the X-ray photoelectron spectroscopy Ge core lines indicates a dominant island nucleation on heterogeneous regions of the surface denuded by the 6R3 graphite pavings. Owing to the used annealing cycles, the deposited Ge amount desorbs on the three surfaces at differentiated temperatures ranging from 950 to 1200 °C. These differences probably reflect the varying morphologies formed at lower temperature on the different surfaces. Considering all these results, the use of imperfect 6R3 surfaces appears to be suited to promote the formation of pure and coherent Ge islands on SiC.  相似文献   

14.
The globe-like diamond microcrystalline-aggregates were fabricated by microwave plasma chemical vapor deposition (MPCVD) method. The ceramic with a Ti mental layer was used as substrate. The fabricated diamond was evaluated by Raman scattering spectroscopy, X-ray diffraction spectrum (XRD), and scanning electron microscope (SEM). The field emission properties were tested by using a diode structure in a vacuum. A phosphor-coated indium tin oxide (ITO) anode was used for observing and characterizing the field emission. It was found that the globe-like diamond microcrystalline-aggregates exhibited good electron emission properties. The turn-on field was only 0.55 V/μm, and emission current density as high as 11 mA/cm2 was obtained under an applied field of 2.9 V/μm for the first operation. The growth mechanism and field emission properties of the globe-like diamond microcrystalline-aggregates are discussed relating to microstructure and electrical conductivity.  相似文献   

15.
Field emission properties of hot filament chemical vapor deposited boron doped polycrystalline diamond have been studied. Doping level (NB) of different samples has been varied by the B/C concentration in the gas feed during the growth process and doping saturation has been observed for high B/C ratios. Threshold field (Eth) for electron emission as function of B/C concentration has been measured, and the influences of grain boundaries, doping level and surface morphology on field emission properties have been investigated. Carrier transport through conductive grains and local emission properties of surface sites have been figured out to be two independent limiting effects in respect of field emission. Emitter current densities of 500 nA cm−2 were obtained using electric fields less than 8 V/μm.  相似文献   

16.
Regular shape defects on the surface of PbTe thin films grown by molecular beam epitaxy (MBE) were studied by scanning electron microscope (SEM). Two types of regular shape defects were observed on Te-rich PbTe films grown at substrate temperature T ≥ 235 °C with a beam flux ratio of Te to PbTe (Rf) to be 0.5 and at 280 °C with a Rf ≥ 0.4, which include cuboids and triangular pyramids. The formation mechanism of the observed regular shape defects is interpreted as following: They are the outcome of fast growth rate along {1 0 0} crystal planes that have the lowest surface energy and the enclosure of the {1 0 0} crystal planes. The formation of the regular shape defects in the growth of PbTe needs appropriate substrate temperature and Te-rich ambience. However, when Rf is decreased low enough to make the films slightly Pb-rich, triangular pits that originate from the insufficient glide of the threading dislocations along the main 〈1 1 0〉 {1 0 0} glide system of PbTe in Cottrell atmosphere, will be the main feature on the film surface.  相似文献   

17.
Qiang Fu  Thomas Wagner 《Surface science》2007,601(5):1339-1344
The growth of ultrathin Cr overlayers on SrTiO3(1 0 0) was studied by X-ray photoelectron spectroscopy, scanning tunneling microscopy, and transmission electron microscopy. It is found that the metal-oxide interaction strongly depends on the deposition temperature. At T < 600 °C, the interfaces are atomically sharp. Local charge transfer happens between the interfacial Cr adatoms and the topmost substrate atoms. The binding energy shift of Cr 2p is dominated by the final state effects. In case of T > 600 °C, bulk diffusion of oxygen in the oxide substrate may occur, which results in a redox reaction and the formation of new reaction phases at the interfaces. In this temperature regime, the binding energy shift of Cr 2p is mainly controlled by the initial state effects.  相似文献   

18.
Thomas Rockey 《Surface science》2007,601(11):2307-2314
The adsorption kinetics, energetics and growth of naphthalene thin films, from submonolayer to about 10 layers, on a Ag(1 1 1) surface at low temperature in a ultrahigh vacuum chamber are examined by using temperature programmed desorption spectroscopy. The first layer adsorption occurs with a desorption energy of 85 ± 5 kJ/mole and results in an interface dipole of 5 ± 1 D, from charge transfer of approximately 0.2 e from naphthalene to Ag. The surface dipole induced inter-adsorbate repulsion causes the lowering of the adsorption energy within the first layer near the saturation coverage so that the second layer deposition begins before the completion of the first layer. The second layer is a metastable phase with desorption energy, 74 ± 3 kJ/mole, smaller than the multilayer desorption energy of 79 ± 5 kJ/mole. Fractional order desorption kinetics were found for both the metastable and the multilayer phases, suggesting desorption from 2-D islanding and 3-D islanding, respectively.  相似文献   

19.
Metastable-induced electron spectroscopy (MIES) together with ultraviolet photoemission spectroscopy (UPS) was applied to the analysis of the surface electronic structure of chemical-vapor-deposited diamond films. The films were grown in a microwave plasma, and their surfaces were terminated by hydrogen. The MIES spectrum measured at an as-deposited surface contains peaks due to adsorbates. When this surface was annealed at 400 °C, those peaks were depressed, and the spectrum showed a similar structure to that of UPS. Once the surface was re-hydrogenated, the MIES spectrum rose up at lower energies than the UPS spectrum did for surfaces annealed at lower temperatures. Finally after annealing at 1000 °C, the cutoff energies of MIES and UPS converged at nearly the same values. The result demonstrates that the MIES detects a surface potential which changes locally at the hydrogen-terminated surfaces.  相似文献   

20.
While a perfect hcp (0 0 0 1) surface has threefold symmetry, the diffraction patterns commonly obtained are sixfold symmetric. This apparent change in symmetry occurs because on a stepped surface, the atomic layers on adjacent terraces are rotated by 180°. Here we use a low-energy electron microscope to acquire the threefold diffraction pattern from a single hcp Ru terrace and measure the intensity vs. energy curves for several diffracted beams. By means of multiple scattering calculations fitted to the experimental data with a Pendry R-factor of 0.077, we find that the surface is contracted by 3.5(±0.9)% at 456 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号