首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytica chimica acta》2003,479(2):203-214
A flow injection (FI) method was developed using electrochemical hydride generation (EcHG) as a sample introduction system, coupled to an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOFMS) for rapid and simultaneous determination of six elements forming hydrides (As, Bi, Ge, Hg, Sb and Se). A novel low volume electrolysis cell, especially suited for FI experiments was designed and the conditions for simultaneous electrochemical hydride generation (EcHG; electrolyte concentrations and flow rates, electrolysis voltage and current) as well as the ICP-TOFMS operational parameters (carrier gas flow rate, modulation pulse width (MPW)) for the simultaneous determination of 12 isotopes were optimized. The compromise operation parameters of the electrolysis were found to be 1.4 and 3 ml min−1 for the anolyte and catholyte flow rates, respectively, using 2 M sulphuric acid. An optimum electrolysis current of 0.7 A (16 V) and an argon carrier gas flow rate of 0.91 l min−1 were chosen. A modulation pulse width of 5 μs, which influences the sensitivity through the amount of ions being collected by the MS per single analytical cycle, provided optimum results for the detection of transient signals. The achieved detection limits were compared with those obtained by using FI in combination with conventional nebulization (FI-ICP-TOFMS); values for chemical hydride generation (FI-CHG-ICP-TOFMS) were taken from the literature. By using a 200 μl sample loop absolute detection limits (3σ) in the range of 10-160 pg for As, Bi, Ge, Hg, Sb and 1.1 ng for Se and a precision of 4-8% for seven replicate injections of 20-100 ng ml−1 multielemental sample solutions were achieved. The analysis of a standard reference material (SRM) 1643d (NIST, “Trace Elements in Water”) showed good agreement with the certified values for As and Sb. Se showed a drastic difference, which is probably due to the presence of hydride-inactive Se species in the sample. Recoveries better than 93% for Ge and Hg and 83.9% for Se were achieved on a spiked SRM sample. The developed method was successfully applied to the simultaneous multielemental determination of hydride forming elements in spring water samples originating from two different regions in Hungary.  相似文献   

2.
A slurry sampling method for the simultaneous determination of hydride forming (As, Bi, Ge, Sb, Se, Sn) and Hg and non-hydride forming (Ca, Fe, Mg, Mn, Zn) elements, without total sample digestion has been developed using the commercial dual-mode sample introduction system (MSIS) coupled with microwave induced plasma optical emission spectrometry (MIP-OES) from biological and environmental reference materials and real samples. The main advantage of this system is its simultaneous determination of elements that form volatile vapor species and elements that do not, without any instrumental changes. Optimization of reaction, nebulization and instrumental conditions was performed to characterize the new system. Slurry concentration up to 4% m/v (particles < 100 μm) prepared in 10% HNO3 containing 100 μL of decanol, by application of ultrasonic agitation, was used with calibration by the standard addition technique. An ultrasonic probe was used to homogenize the slurry in the quartz cup just before its introduction into the reaction/nebulization system; the multimode sample introduction system (MSIS) combines the benefits of nebulization and vapor generation in a single device. Detection limits (LOD, 3σblank, peak area) of 0.07, 0.29, 0.25, 0.10, 0.12, 0.14, 0.11, 0.28, 0.42, 0.02, 0.21 and 0.34 μg g− 1 were obtained for As, Bi, Ge, Sb, Se, Sn, Hg, Ca, Fe, Mg, Mn and Zn, respectively. The relative standard deviations were ca. 10%, adequate for slurry analysis. To test the accuracy, six certified reference materials were analyzed with the analyte concentrations mostly in the μg g− 1 level. Measured concentrations are in satisfactory agreement with certified values for the biological reference materials (LUTS-1, DOLT-2) and environmental reference materials (PACS-1, GWB 07302, NIST 2710, NBS 1633b), all adequate for slurry sampling. The method was successfully applied to the determination of the elements in real samples (coal fly ash, lake sediment, sewage). The method requires small amounts of reagents and reduces contamination and losses.  相似文献   

3.
A flow injection on-line sorption system was developed for the separation and preconcentration of traces of Ag, Cd, Co, Ni, Pb, U and Y from natural water samples with subsequent detection by ICP TOF MS. Simultaneous preconcentration of the analytes was achieved by complexation with the chelating reagent 1-phenyl-3-methyl-4-benzoylpyrazol-5-one immobilized on the inner walls of a (200 cm × 0.5 mm) PTFE knotted reactor. The analytes were eluted and transported to an axial ICP TOF MS system with 1% (v/v) HNO3 containing 0.3 μg l−1 of Rh as an internal standard using ultrasonic nebulization. The detection limits (3σ) varied from 0.3 ng l−1 for Y to 15.2 ng l−1 for Ni and the precision (R.S.D.) was better than 4%. Using a loading time of 90 s and a sample flow rate of 4.5 ml min−1, enhancement factors of 3-14 were obtained for the different analytes in comparison with their direct determination by ICP TOF MS with ultrasonic nebulization without preconcentration. The accuracy of the method was demonstrated by analysis of water based certified reference materials.  相似文献   

4.
The objective of this study is to evaluate the performance of two lab-made systems based on the Multimode Introduction System (MSIS™) and the modified MSIS™, to generate and introduce vapors of Ag, Cu, Cd, Cu, Ni, Sn, Zn, and also Au in the ICP torch. An univariate procedure was used to select the optimized working conditions (Ar flow, sample, reductant and waste flows, and reagent concentrations). Optimum conditions for working with modified MSIS were: nitric acid concentration 0.35 M, 8-hydroxyquinoline concentration: 40 mg L−1, sodium borohydride concentration: 1.75% (w/v) + 0.4% (w/v) NaOH, argon purge flow to sweep the vapors to the torch: 1.2 L min−1, sample flow and sodium borohydride flows: 2.3 L min−1; waste flow: 7.7 mL min−1. For the optimum working conditions for lab-made MSIS in dual mode the concentration of 8-hydroxyquinoline was 225 mg L−1, the Ar purge flow was 0.75 L min−1, and the conventional nebulization flow was 2.3 L min−1. The sensitivity obtained was higher using the lab-made MSIS than using the lab-made modified MSIS or a forced outlet gas–liquid separator. The limits of detection were better for Au, Cd, Sn than those obtained using conventional nebulization; the measurements were precise (RSDs ≤ 5% in dual mode) and a good accuracy was obtained in the determination of Cd, Cu, Ni and Zn in a wastewater reference material using aqueous calibration and the lab-made MSIS in dual mode.  相似文献   

5.
A flow injection on-line sorption preconcentration system has been synchronously coupled to an electrothermal atomic absorption spectrometry (ETAAS) system for the selective determination of trace amounts of Sb(III) in water, soil and plant. The determination was achieved by selective complexation and sorption of Sb(III) with [1,5-bis(2-pyridyl)-3-sulphophenyl methylene thiocarbonohydarzide (PSTH) immobilized on an anion-exchange resin (Dowex 1× 8-200)] at a wide range of pH, quantitative elution with 50 μl of 2 M HNO3 and subsequent ETAAS detection. ETAAS determination of the analyte was performed in parallel with the preconcentration of the next sample. Using a preconcentration time of 60 s and a sample loading flow rate of 2.8 ml min−1, an enhancement factor of 12 was obtained in comparison with direct injection of 50 μl aqueous solution, resulting in a sampling frequency of 31 samples h−1. The detection limit (3 s) was 2 μg l−1 and the precision was 3.1% (R.S.D.) for 11 replicate determinations at 10 μg l−1. The accuracy of the proposed method was demonstrated by analyzing one certified sample and different spiked samples.  相似文献   

6.
A novel strategy for implementing the automatic standard addition method (SAM) is described. By using a flow-batch system that presents the intrinsic favourable characteristics of the flow and batch techniques, the proposed strategy performs fast standard additions with sufficient flexibility and versatility and employs only one standard solution per analyte. To calculate the analyte concentration, a mathematical model based on a classical SAM and flow variables of the system was developed. The proposed flow-batch SAM was applied to copper determination by flame atomic absorption spectrometry (AAS) in sugar cane-made alcoholic beverages, known as “Cachaça”, available in Brazil. A SAM has been recommended for these analyses because “Cachaças” presents a significantly different composition causing matrix effects and copper determination by calibration using matrix-matching standards can yield inaccurate results. The results show good agreement between the obtained values with the proposed flow-batch SAM and a manual SAM. The mean relative errors and overall standard deviations were always <1.0% (n=6) and 0.2 mg l−1, respectively, for 1.0-7.0 mg l−1 Cu. By using five standard addition levels, the sample throughput was 70 h−1 and the consumption of sample and standard solution were 1.5 and 0.5 ml per analysis, respectively.  相似文献   

7.
A systematic study on the high-temperature Torch Integrated Sample Introduction System (TISIS) for use in Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has been performed. The investigation included the optimization of the relevant parameters (chamber temperature, sheathing gas flow rate, nebulizer gas flow rate, sample uptake rate), the evaluation of its performance characteristics (sensitivity, limits of detection, stability, memory effects, use with the dynamic reaction cell) and representative applications to environmental, biological and clinical samples. Under the optimal conditions (T = 150 °C; nebulizer gas flow rate of 0.7 L min−1 along with sheathing gas flow rate of 0.35 L min−1 and a sample uptake rate of 20 μL min−1), the sensitivity was from 2 to 8 times higher than that measured using a conventional micronebulizer/mini-spray chamber system, due to the enhanced analyte mass transport toward the plasma and the solvent introduction in the vapour form. In addition, for several elements, TISIS provided lower limits of detection than the conventional system, even when the latter worked at 5-fold higher sample uptake rate. Short-term and long-term precision was better than 5%. Spectroscopic interferences arising from common matrices were efficiently removed by the dynamic reaction cell technique. The application of TISIS/ICP-MS to representative certified reference samples (spinach leaves, marine plankton, bone tissue, human blood) proved the suitability of this system for the accurate analysis of limited-size samples.  相似文献   

8.
Polychlorotrifluoroethylene (PCTFE) in the form of beads was applied, as packing material for flow injection on-line column preconcentration and separation systems coupled with flame atomic absorption spectrometry (FAAS). Its performance characteristics were evaluated for trace copper determination in environmental samples. The on-line formed complex of metal with diethyldithiophosphate (DDPA) was sorbed on the PCTFE surface. Isobutyl methyl ketone (IBMK) at a flow rate of 2.8 mL min−1 was used to elute the analyte complex directly into the nebulizer-burner system of spectrophotometer. The proposed sorbent material reveal, excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates up to 15 mL min−1 without loss of retention efficiency. For copper determination, with 90 s preconcentration time the sample frequency was 30 h−1, the enhancement factor was 250, which could be further improved by increasing the loading (preconcentration) time. The detection limit (3s) was cL = 0.07 μg L−1, and the precision (R.S.D.) was 1.8%, at the 2.0 μg L−1 Cu(II) level. For lead determination, the detection limit was cL = 2.7 μg L−1, and the precision (R.S.D.) 2.2%, at the 40.0 μg L−1 Pb(II) level. The accuracy of the developed method was evaluated by analyzing certified reference materials and by recovery measurements on spiked natural water samples.  相似文献   

9.
The temperature of saturation of potassium hydrogentartrate (KHT) in wines was studied as an analytical parameter for wine tartaric stability evaluation. Two types of wines were used: “Vinho Verde” and “Port wine”. The temperature of saturation was determined by the intersection of the plots of conductivity versus temperature for a wine sample and the same wine sample with added KHT, by raising the temperature. The heating rate used was optimised in terms of accuracy and time necessary for the determination. An optimal value of 0.5 °C min−1 was found for both types of wine. The saturation temperature was determined for eight untreated wines and after two different tartaric stabilisation treatments, cold stabilisation and electrodialysis. The temperature of saturation values allowed the evaluation of the tartaric stability achieved and the comparison of the two treatments.  相似文献   

10.
A new time-based flow injection on-line solid phase extraction method for chromium(VI) and lead determination using flame atomic absorption spectrometry was developed. The use of hydrophobic poly-chlorotrifluoroethylene (PCTFE)-beads as absorbent in on-line preconcentration system was evaluated. Effective formation of ammonium pyrrolidine dithiocarbamate complexes and subsequently retention in PCTFE packed column, was achieved in pH range 1.0-1.6 and 1.5-3.2 for Cr(VI) and Pb(II) ions, respectively. The sorbed analyte was efficiently eluted with isobutyl-methyl-ketone for on-line FAAS determination. The proposed packing material exhibited excellent chemical and mechanical resistance, fast kinetics for adsorption of Cr(VI) and Pb(II) permitting the use of high sample flow rates at least up to 15 mL min−1 without loss of retention efficiency. For a preconcentration time of 90 s, the sample frequency was 30 h−1, the enhancement factor was 94 and 220, the detection limit was 0.4 and 1.2 μg L−1, while the precision (R.S.D.) was 1.8% (at 5 μg L−1) and 2.1% (at 30 μg L−1) for chromium(VI) and lead, respectively. The applicability and the accuracy of the developed method were estimated by the analysis spiked water samples and certified reference material NIST-CRM 1643d (Trace elements in water) and NIST-SRM 2109 (chromium(VI) speciation in water).  相似文献   

11.
In this study a method for the determination of low concentrations of silver in waters using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry (FAAS) was developed. Moringa oleifera seeds were used as a biosorbent material. Chemical and flow variables of the on-line preconcentration system such as sample pH and flow rate, preconcentration time, eluent concentration and sorbent mass were studied. The optimum preconcentration conditions were obtained using sample pH in the range of 6.0-8.0, preconcentration time of 4 min at a flow rate of 3.5 mL min− 1, 0.5 mol L− 1 HNO3 eluent at a flow rate of 4.5 mL min− 1 and 35 mg of sorbent mass. With the optimized conditions, the preconcentration factor, precision, detection limit and sample throughput were estimated as 35 (for preconcentration of 14 mL sample), 3.8% (5.0 μg L− 1, n = 7), 0.22 μg L− 1 and 12 samples per hour, respectively. The developed method was successfully applied to mineral water and tap water, and accuracy was assessed through analysis of a certified reference material for water (APS-1071 NIST) and recovery tests, with recovery ranging from 94 to 101%.  相似文献   

12.
A simple and fast method for the determination of As, Ba, Cd, Co, Cu, Fe, Ga, Mn, Mo, Ni, Pb, Rb, Se, Sr, Tl, U, V and Zn in biological samples by inductively coupled plasma mass spectrometry (ICP-MS), after sample solubilization with formic acid and introduction by a microconcentric nebulizer, is proposed. The sample is mixed with formic acid, kept at 90 °C for one hour and then diluted with nitric acid aqueous solution to a 50% v/v formic acid and 1% v/v nitric acid final concentrations. The final sample solution flow rate for introduction into the plasma was 30 μL min−1. The optimized and adopted nebulizer gas flow rate was 0.7 L min−1 and RF power was 800 W. These conditions are very different than those normally used when a conventional nebulizer is employed. Rodhium was used as internal standard. External calibration against aqueous standard solutions, without formic acid, could be used for quantification, except for As, Se and Zn. However, external calibration with 50% formic acid allows the determination of all analytes with high accuracy and it is recommended. The detection limits were between 0.0005 (Tl) and 0.22 mg kg−1 (Fe) and the precision expressed by the relative standard deviations (RSD) were between 0.2% (Sr) and 3.5% (Ga). Accuracy was validated by the analysis of four certified reference biological materials of animal tissues, comparing the results by linear regressions and by the t-test at a 95% confidence level. The recommended procedure avoids plasma instability and carbon deposit on the cones.  相似文献   

13.
An automated sequential injection (SI) on-line solvent extraction-back extraction separation/preconcentration procedure is described. Demonstrated for the assay of cadmium by electrothermal atomic absorption spectrometry (ETAAS), the analyte is initially complexed with ammonium pyrrolidinedithiocarbamate (APDC) in citrate buffer and the chelate is extracted into isobutyl methyl ketone (IBMK), which is separated from the aqueous phase by means of a newly designed dual-conical gravitational phase separator. A metered amount of the organic eluate is aspirated and stored in the PTFE holding coil (HC) of the SI-system. Afterwards, it is dispensed and mixed with an aqueous back extractant of dilute nitric acid containing Hg(II) ions as stripping agent, thereby facilitating a rapid metal-exchange reaction with the APDC ligand and transfer of the Cd into the aqueous phase. The aqueous phase is separated in a second dual-conical gravitational phase separator, and 30 μl of it is entrapped and metered in a sample loop (SL) and subsequently introduced via air segmentation into the graphite tube for analyte quantification. The ETAAS determination is performed in parallel with the separation/preconcentration process of the ensuing sample. An enrichment factor of 21.4, a detection limit of 2.7 ng l−1, along with a sampling frequency of 13 h−1 were obtained at a sample flow rate of 6.0 ml min−1. The precision (R.S.D.) at the 0.4 μg l−1 level was 1.8% as compared to 3.2% when quantifying the organic extractant directly. The applicability of the procedure is demonstrated for the determination of trace levels of cadmium in three certified reference materials.  相似文献   

14.
A flow injection analysis system for on-line preconcentration and simultaneous determination of Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ in aqueous samples by inductively coupled plasma (ICP)-atomic emission spectrometry with a charge coupled detector is described. The preconcentration of analytes is accomplished by retention of their chelates with sodium diethyldithiocarbamate in aqueous solution on a solid phase containing octadecyl silica in a minicolumn. Methanol, as eluent, is introduced into the conventional nebulizer of the ICP instrument. The effects of different parameters, including preconcentration flow rate (equal to sample flow rate (SR)), eluent flow rate (ER), weight of solid phase (W) and eluent loop volume (EV), were optimized by the super-modified simplex method. The optimum conditions were evaluated to be SR 7.2 ml min−1, ER 3.5 ml min−1, W of 100 mg and EV of 0.8 ml. An enrichment factor of 312.5 for each analyte was obtained. The detection limits of the proposed method for Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ were evaluated as 1.3, 1.0, 0.8, 0.3, 14.7, 0.5, 5.5 and 0.1 ng l−1, respectively. The effect of several metal ions on percent recovery was also studied. The method was applied to the recovery of these heavy metals from real matrices and to the simultaneous determination of these cations in different water samples.  相似文献   

15.
A flow injection hydride manifold was coupled to a 150 W tungsten coil electrothermal atomizer for in situ hydride collection followed by selenium and arsenic determination by ET AAS. Rhodium (200 μg), thermally reduced over the double layer tungsten atomizer, was very efficient at collecting selenium or arsenic hydrides. Prior to analysis, biological samples were digested in closed-vessels microwave digestion system. Prior to the hydride formation, both selenium and arsenic were reduced to valence state (IV) and (III), respectively. The detection limit was 35 ng L−1 for selenium and 110 ng L−1 for arsenic. Sample throughput was 70 h−1 using 30 s of hydride trapping time. Method accuracy was evaluated by analyzing biological-certified reference materials from the National Institute of Standard and Technology (SRM-1577a and SRM-1577b “bovine liver” and RM-8414 “bovine muscle powder”) and from the International Agency for Energy Atomic (A-13 “animal blood”) and one water-certified reference material from the National Institute of Standard and Technology (SRM-1640 trace elements in natural water). By applying a t-test, there was no significant difference at the 95% probability level between the results obtained with the proposed method and those certified values.  相似文献   

16.
A method for trace level determination of organomercury species in different biota matrixes by using aqueous-phase propylation followed by headspace solid-phase microextraction (HS-SPME) and gas chromatography (GC) coupled to pyrolysis-atomic fluorescence spectrometry (Py-AFS) detection has been optimized. To maximize peak area and symmetry factors of methylmercury (MeHg) and ethylmercury (EtHg) analyzed as propyl derivatives, carrier and make-up flow rates were optimized by a user-defined experimental design. A multiple response simultaneous optimization was applied using the desirability function to achieve global optimal operating conditions. They were attained at 2 and 6 mL min−1 as carrier and make-up gas flow rates, respectively. In addition, pyrolyser temperature was also optimized, yielding the best value at 750 °C. Limits of detection and quantification at the optimum conditions were 0.04 ng g−1 and 0.13 ng g−1 for both, MeHg and EtHg. The developed analytical procedure was validated with a certified reference material (DORM-2) and applied to the determination of organomercury incurred in waterfowl egg and fish samples.  相似文献   

17.
Arslan Y  Kendüzler E  Ataman OY 《Talanta》2011,85(4):1786-1791
Sensitivity enhancement of indium determination by flame atomic absorption spectrometry (FAAS) was achieved; using a slotted quartz tube (SQT-FAAS) and slotted quartz tube atom trap (SQT-AT-FAAS). SQT was used as an atom trap (AT) where the analyte is accumulated in its inner wall prior to re-atomization. The signal is formed after re-atomization of analyte on the trap surface by introduction of 10 μL of isobutyl methyl ketone (IBMK). Sensitivity was improved 400 times using SQT-AT-FAAS system with respect to conventional FAAS and 279 times with respect to SQT-FAAS without any collection. Characteristic concentration (C0) and limit of detection values were found to be 3.63 ng mL−1 and 2.60 ng mL−1, respectively, using a sample flow rate of 7.0 mL min−1 and a collection period of 5.0 min. In addition, interference effects of some elements on indium signal were studied. In order to characterize indium species trapped, X-ray Photoelectron Spectrometry (XPS) was utilized and it was found that indium was collected on the inner surface of SQT as In2O3. The accuracy of the procedure was checked to determine indium in the standard reference material (Montana Soil, SRM 2710).  相似文献   

18.
The absorbance characteristics and influential factors on these characteristics for a liquid-phase gas sensor, which is based on gas–permeable liquid core waveguides (LCWs), are studied from theoretical and experimental viewpoints in this paper. According to theory, it is predicted that absorbance is proportional to the analyte concentration, sampling time, analyte diffusion coefficient, and geometric factor of this device when the depletion layer of the analyte is ignored. The experimental results are in agreement with the theoretical hypothesis. According to the experimental results, absorbance is time-dependent and increasing linearly over time after the requisite response time with a linear correlation coefficient r2 > 0.999. In the linear region, the rate of absorbance change (RAC) indicates improved linearity with sample concentration and a relative higher sensitivity than instantaneous absorbance does. By using a core liquid that is more affinitive to the analyte, reducing wall thickness and the inner diameter of the tubing, or increasing sample flow rate limitedly, the response time can be decreased and the sensitivity can be increased. However, increasing the LCW length can only enhance sensitivity and has no effect on response time. For liquid phase detection, there is a maximum flow rate, and the absorbance will decrease beyond the stated limit. Under experimental conditions, hexane as the LCW core solvent, a tubing wall thickness of 0.1 mm, a length of 10 cm, and a flow rate of 12 mL min−1, the detection results for the aqueous benzene sample demonstrate a response time of 4 min. Additionally, the standard curve for the RAC versus concentration is RAC = 0.0267 c + 0.0351 (AU min−1), with r2 = 0.9922 within concentrations of 0.5–3.0 mg L−1. The relative error for 0.5 mg L−1 benzene (n = 6) is 7.4 ± 3.7%, and the LOD is 0.04 mg L−1. This research can provide theoretical and practical guides for liquid–phase gas sensor design and development based on a gas-permeable Teflon AF 2400 LCW.  相似文献   

19.
Matoso E  Cadore S 《Talanta》2011,84(2):335-340
A closed vessel method using a microwave oven was developed for the determination of As, B, Ba, Bi, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, Sn and Sb by Inductively Coupled Argon Plasma Optical Emission Spectrometry (ICP OES). The method was applied to samples of polyvinyl acetate-based glue in water emulsions. Parameters such as wavelength, nebulization pressure and RF power were optimized and the residual acidity after the digestion process was determined. The addition of internal standards was evaluated and the accuracy of the proposed method was verified with addition and recovery experiments and also with certified reference materials, achieving good results. Using a nebulization flow rate of 0.73 L min−1and a RF power of 1200 W it was possible to obtain adequate values for limit of detection and limit of quantification as well as recovery values in the range of 80-106%, for all the analytes. The analysis of coloured glue samples (white, black, blue, yellow, red and green), widely used by children, showed no contamination by the elements studied.  相似文献   

20.
A modified SBA-15 mesoporous silica material NH2-SBA-15 was synthesized successfully by grafting γ-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L−1 NH3·H2O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min−1 sample loading (300 s) and an elution flow rate of 2.0 mL min−1 (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 μg L−1 level with a detection limit of 0.2 μg L−1 (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号