共查询到20条相似文献,搜索用时 15 毫秒
1.
The Au(1 0 0) surface structure in contact with 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) has been observed using electrochemical atomic force microscopy (EC-AFM) under an electrochemically controlled potential. The AFM images, taken in EMImBF4 in the potential range from −0.6 to 0.2 V vs. Ag/Ag(I), shows a fourfold symmetry with the distance between protrusions of ≈0.30-0.32 nm. This structure agrees well with the ideal surface structure of Au(1 0 0)-(1 × 1) and it is very similar to that previously obtained in a sulfuric acid aqueous solution. 相似文献
2.
The atomic structure of the Au/Si(1 1 1)-(5 × 2) surface has been studied by density-functional theory calculations. Two structure models, proposed experimentally by Marks et al. and Hasegawa et al., have been examined on an equal ground. In our total-energy calculations, both models are found to be locally stable and energetically comparable. In our electronic-structure analyses, however, both models fail to reproduce the key features of angle-resolved photoemission spectra and scanning-tunneling-microscopy images, indicating that the considered models need to be modified. Suggestions for the modification are given based on the present calculations. 相似文献
3.
B.J. Gibbons 《Surface science》2006,600(12):2417-2424
We have measured how the initial terrace width l0 on vicinal Si(1 1 1) surfaces influences the rate of step bunching and the minimum terrace width within a bunch when direct-current heated at 940-1290 °C. A comparison of this data with analytic solutions and numerical simulations of the conventional “sharp-step” model give strong evidence that the kinetic length d is relatively small (d < ∼20 nm) in both temperature regime I (∼850-950 °C) and regime III (∼1200-1300 °C), in which step-down current is required for step bunching. This indicates that surface mass transport is diffusion-limited in both regimes I and III when l0 > 20 nm, and hence that the adatom attachment- and terrace diffusion-hopping rates are of comparable magnitude. We also observe similar scaling with initial terrace width in temperature regime II (∼1040-1190 °C), in which step-up current is required for bunching, suggesting a similar step bunching mechanism in all three temperature regimes. 相似文献
4.
Intermixing, growth, geometric and electronic structures of gold films grown on antiferromagnetic stacking body-centered-tetragonal manganese (0 0 1) films were studied by means of scanning tunneling microscopy/spectroscopy at room temperature in ultra-high vacuum. We found stable ordered c(2 × 2)-MnAu(0 0 1) alloy layers after depositing Au on pure Mn layers. Since at the fourth layer (5 × 23)-like Au reconstruction appears instead of the c(2 × 2) structure and local density of states peaks obtained on the c(2 × 2)-MnAu surface disappear, pure Au layers likely grow from the fourth layer. 相似文献
5.
Scanned-energy mode photoelectron diffraction using the O 1s and V 2p emission perpendicular to the surface has been used to investigate the orientation and internal conformation of vanadyl phthalocyanine (VOPc) adsorbed on Au(1 1 1). The results confirm earlier indications from scanning tunnelling microscopy that the VO vanadyl bond points out of, and not into, the surface. The VO bondlength is 1.60 ± 0.04 Å, not significantly different from its value in bulk crystalline VOPc. However, the V atom in the adsorbed molecule is almost coplanar with the surrounding N atoms and is thus pulled down into the approximately planar region defined by the N and C atoms by 0.52 (+0.14/−0.10) Å, relative to its location in crystalline VOPc. This change must be attributed to the bonding interaction between the molecule and the underlying metal surface. 相似文献
6.
We have characterized the structural behaviour of ethanethiol self-assembled monolayers (SAMs) on Au(1 0 0) in 0.1 M H2SO4 as a function of electrode potential, using in-situ scanning tunneling microscopy (STM). After modification of the Au(1 0 0) electrode in an ethanolic solution of ethanethiol, STM images in air reveal a disordered thiol adlayer and a surface that is covered by 25% of monoatomic high gold islands, which originate from lifting of the (hex) reconstruction during thiol adsorption. In contrast to alkanethiol SAMs on Au(1 1 1), no vacancy islands are seen on the Au(1 0 0) surface. After contact of the SAM-covered Au(1 0 0) electrode with 0.1 M H2SO4 under potential control, two different structures are observed, depending on the potential range positive or negative of +0.3 V vs. SCE. In both cases the emerging ordered structures are quadratic, their unit cells being rotated by 45° with respect to the main crystallographic axes of the substrate. However, the ordered structure at negative potentials is more densely packed than the one at positive potentials, and in addition the surface reveals an almost 50% coverage of monoatomic high gold islands. The structure of the SAM changes reversibly with the electrode potential, the long range order gradually decreasing with each transition. Concomittant with this structure transition monoatomic deep holes are created when the potential is stepped from the cathodic to the anodic region. The experimental observations are rationalized by a high mobility of the gold thiolate moiety, causing the surface density of the SAM-covered gold to change drastically with potential. 相似文献
7.
The present work deals with the electrochemical formation of superlattice structures on n-type (1 0 0) InP in HCl solutions. The superlattices consist of a stack of two layers with alternating high and low porosity on n-type material obtained by changing the anodizing current or the potential periodically in HCl solutions. The superlattice structures were characterized by scanning electron microscopy. The pore morphology and structure depend strongly on the electrochemical conditions. For anodization with low currents (e.g., 1 or 10 mA) or at low potentials (e.g., 1.5 VAg/AgCl), a porous layer with a facet-like structure was formed. For higher currents or potentials, such as 50 or 100 mA or 3 VAg/AgCl, respectively, a tree-like structure with random and/or tangled branches was observed. Finally, samples anodized at 5 VAg/AgCl, show a porous layer with a regular array of straight pores. The morphology and structure of the stacks of the porous layers can be controlled in the nanometer range, depending on the electrochemical conditions. 相似文献
8.
Fabien Silly 《Surface science》2006,600(17):219-223
Scanning tunneling microscopy (STM) is used to investigate the (0 0 1) surface structure of Nb doped SrTiO3 single crystals annealed in ultra high vacuum (UHV). Atomically resolved images of the (2 × 2) reconstructed surface are obtained after annealing a chemically etched sample. With further annealing dotted row domains appear, which coexist with the (2 × 2) reconstruction. The expansion of these domains with further annealing gives rise to the formation of a TiO2 enriched c(4 × 4) reconstruction. 相似文献
9.
A surface preparation method with fine SiO2 particles in water is developed to flatten Si(0 0 1) surfaces on the nanometer scale. The flattening performance of Si(0 0 1) surfaces after the surface preparation method is investigated by scanning tunneling microscopy. The observed surface is so flat that 95% of the view area (100 × 100 nm2) is composed of only three atomic layers, namely, one dominant layer occupying 50% of the entire area and two adjacent layers. Furthermore, a magnified image shows the outermost Si atoms regularly distributed along the 〈1 1 0〉 direction on terraces. 相似文献
10.
The electrodeposition of Au on Pt(1 1 1) from electrolytes containing μM concentrations of was studied by in situ scanning tunneling microscopy. Under these conditions the Au flux is limited by diffusion in the electrolyte over a wide potential range, which allows to assess the effect of the electrochemical environment on the growth kinetics. Similar to gas phase metal deposition Au film growth proceeds via nucleation and lateral growth of Au monolayer islands, with the saturation island density strongly depending on the deposition potential and on the anion species in the electrolyte. For deposition in H2SO4 solution the saturation island density continuously increases with increasing potential between −0.2 and 0.5 V (SCE), whereas in Cl-containing H2SO4 it first decreases and then increases again. Following nucleation and growth theories this behavior can be attributed to potential-induced changes of the Au surface mobility, caused by changes in the density and structure of coadsorbed sulfate/bisulfate and chloride adlayers. Under conditions of high Au surface mobility multilayer growth proceeds via a typical Stranski-Krastanov growth mode, with layer-by-layer growth of a pseudomorphic Au film up to 2 ML and 3D growth of structurally relaxed islands at higher coverage, indicating thermodynamic control under these conditions. 相似文献
11.
H. Kawanowa R. SoudaH. Ozawa Y. GotohK. Terabe S. TakekawaK. Kitamura 《Surface science》2003,538(3):L500
The atomic structure of LiNbO3(0 0 0 1) surface was investigated by low-energy neutral scattering spectroscopy (LENS). Poled stoichiometric LiNbO3 (SLN) samples were prepared for the measurements. The LENS was developed for surface structure and composition analysis particularly of highly insulating materials and was successfully applied to the structure analysis of the SLN(0 0 0 1) surface. The polar angle dependences of intensity of scattered He0 from the poled SLN surfaces indicate obvious differences between the negatively and the positively charged surfaces. It is suggested that O atoms cover the surfaces, and the first metal layers underneath the O layer consist of Li and Nb for negatively and positively charged surfaces, respectively, parallel to the applied electric field. 相似文献
12.
Two different growth modes of manganese silicide are observed on Si(1 0 0) with scanning tunneling microscopy. 1.0 and 1.5 monolayer Mn are deposited at room temperature on the Si(1 0 0)-(2 × 1) substrate. The as-grown Mn film is unstructured. Annealing temperatures between room temperature and 450 °C lead to small unstructured clusters of Mn or MnxSiy. Upon annealing at 450 °C and 480 °C, Mn reacts chemically with the Si substrate and forms silicide islands. The dimer rows of the substrate become visible again. Two distinct island shapes are found and identified as MnSi and Mn5Si3. 相似文献
13.
Alexandra EvstigneevaRasdip Singh Michael Trenary Shigeki Otani 《Surface science》2003,542(3):221-229
X-ray photoelectron spectroscopy has been used to study the clean TaB2(0 0 0 1) surface and its reaction with O2. In agreement with previous studies, XPS indicates that the clean surface is boron terminated. The topmost boron layer shows a chemically shifted B 1s peak at 187.1 eV compared to a B 1s peak at 188.6 eV for boron layers below the surface. The 187.1-188.6 eV peak intensity ratio and its variation with angle between the crystal normal and the detector is well described by a simple theoretical model based on an independently calculated electron inelastic mean free path of 15.7 Å for TaB2. The dissociative sticking probability of O2 on the boron-terminated TaB2(0 0 0 1) surface is lower by a factor of 104 than for the metal-terminated HfB2(0 0 0 1) surface. 相似文献
14.
Masuaki Matsumoto Shohei Ogura Katsuyuki Fukutani Tatsuo Okano 《Surface science》2009,603(19):2928-2934
Room temperature (RT) adsorption of nitric oxide (NO) on Ir(1 1 1) was studied by scanning tunneling microscopy (STM). At low exposures, NO molecules can not be imaged by STM, because at RT the diffusion of NO is much faster than the STM scanning speed. At high exposures near the saturation coverage, however, a well-ordered 2 × 2 structure is observed. The coverage of the major 2 × 2 species is 0.25 and they can be assigned to the NO molecules adsorbed on the Ir ontop sites. A small number of less bright spots are assigned to nitrogen atoms produced by dissociation. Their number increases by annealing the NO-saturated surface at 380 K. A small number of another dissociation product, oxygen, are observed as black lines, indicating that the diffusion of oxygen atoms is fast. Scratch-like noise features were also detected by the STM, which suggests that a mobile precursor state exists, which was clearly shown by the effects of electron irradiation from the STM tip. These results are consistent with the previous molecular beam studies. Hopping of the 2 × 2 ordered NO species was frequently observed at the anti-phase domain boundaries and edges of the 2 × 2 islands. 相似文献
15.
Molybdenum was deposited in two steps (3 eq. ML and 1 eq. ML) on the light blue rutile TiO2(1 1 0) (1 × 1) surface at room temperature, each Mo deposition cycle being followed by an annealing up to 950-1000 K. This procedure was found to lead to formation of separated clusters having a size in very wide range (1-20 nm). Scanning tunneling microscopy showed a dependence of the cluster morphology as a function of the size. The scanning tunneling spectra of Mo clusters was studied as a function of cluster dimensions and discussed in comparison with photoelectron spectroscopy results previously obtained for homogeneous Mo films. The dI/dV curves do not display the valence band structure of deposited material, which could be explained by the Schottky barrier formation. 相似文献
16.
Growth of sexithiophene films on both ordered and disordered TiO2(1 1 0) surfaces has been investigated by angle-resolved ultraviolet photoemission spectroscopy, atomic force microscopy, and X-ray diffraction including grazing-incidence characterization. The order (or disorder) of the TiO2(1 1 0)-1 × 1 surface has been observed to profoundly influence the electronic, morphological, and structural properties of the 6T films: the band alignment, which determines the injection efficiency of contacts, has been considerably modified by 0.6 eV, and a morphology with either needle-like or dendritic-like islands has been obtained. The changes in the 6T film properties are associated with the orientational modifications of sexithiophene molecules within the films, either flat-lying or upright standing, 6T(0 1 0) or 6T(1 0 0) crystallites, respectively. The growth of different crystallite orientations is argued to be controlled by the kinetics mediated by the (dis)order of the TiO2(1 1 0) surface rather than exclusively by chemical interaction between the molecule and the substrate. 相似文献
17.
A combined atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) study of tungsten oxide model catalysts is presented. The model catalysts were prepared by applying the real preparation method to a ZrO2(1 0 0) single crystal support. AFM imaged several granular structures of scattered dimensions on the surface of ZrO2(1 0 0) in the as prepared samples. After heating, at low loading the tungsten species rearranged into small WOx particles strongly interacting with the substrate. At high tungsten content large WO3 aggregates also formed. XPS analysis confirmed these changes. The estimated surface density of the interacting W-containing species closely matched that of real catalysts. 相似文献
18.
Miguel Labayen 《Surface science》2004,573(1):128-139
The potential-induced (1 × 1) → “hex” transition on Au(1 0 0) electrodes in 0.01 M Na2SO4 + 1 mM HCl was studied by in situ scanning tunneling microscopy at high time resolution (Video-STM). According to these observations the elementary units of the “hex” surface reconstruction, hexagonally-ordered strings in the Au surface layer, are highly dynamic nanoscale objects. Isolated “hex” strings exhibit dynamic fluctuations in structure and position on the millisecond timescale. These fluctuations exceed the mobility of multistring “hex” domains by several orders of magnitude and can be explained by collective dynamic processes within the strings. Furthermore, the observations reveal a novel 1D mass transport mechanism along the strings, details on the nucleation and growth of “hex” strings and complex string restructuring processes, facilitating “hex” domain ripening. 相似文献
19.
We have studied the scaling behavior of two-dimensional island density during submonolayer growth of CaF2 on vicinal Si(1 1 1) surfaces using scanning tunneling microscopy. We have analyzed the morphology of the Si(1 1 1) surfaces where CaF2 partial monolayers with coverages of about 0.1 monolayer are deposited at ∼600 °C. The number density of terrace nucleated islands increases with substrate terrace width l as ∼l4 in a low island density regime. This scaling behavior is consistent with predictions for the case of the irreversible growth of islands. 相似文献
20.