首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, Amberlite XAD-2 resin functionalized with 4,5-dihydroxy-1,3-benzenedisulfonic acid was synthesized, characterized and applied as a new packing material for an on-line system to nickel preconcentration. The method is based on the sorption of Ni(II) ions in a minicolumn containing the synthesized resin, posterior desorption using an acid solution and measurement of the nickel by spectrophotometry (PAR method). The optimization of the system was performed using factorial design and Doehlert matrix considering five variables: eluent concentration, PAR solution pH, sample flow rate, PAR solution concentration and sample pH. Signals were measured as peak height by using an instrument software. Using the experimental conditions defined in the optimization, the method allowed nickel determination with achieved sampling rate of 25 samples per hour, detection limit (3 s) of 2 μg l−1 and precision (assessed as the relative standard deviation) of 8.2-2.6%, for nickel solutions of 10.0-200.0 μg l−1 concentration, respectively. The experimental enrichment factor of the proposed system was 46, for 120 s preconcentration time. The proposed procedure was applied for nickel determination in food samples. Recoveries of spike additions (5 or 10 μg g−1) to food samples were quantitative (94-110%).  相似文献   

2.
A procedure for the determination of trace level of copper(II) and cadmium(II) by FAAS using an on-line preconcentration system has been proposed. In this system, copper and cadmium ions were adsorbed onto a minicolumn packed with silica gel modified with niobium(V) oxide (Nb2O5-SiO2), followed by nitric acid elution in reverse mode and determination on-line by flame atomic absorption spectrometry (AAS) without interference of the matrix. Chemical and flow variables as well as concomitant ions were studied in the developed procedure. The enrichment factor for copper(II) and cadmium(II) was 34.2 and 33.0, respectively, using a preconcentration time of 2 min. The limit of detection for copper(II) and cadmium(II) was 0.4, and 0.1 μg l−1, respectively. The precision of the method, evaluated as the relative standard deviation in solutions containing 15 μg l−1 of copper and 10 μg l−1 of cadmium, by analyzing a series of seven replicates, was 1.8 and 1.6%, respectively. The accuracy was assessed through recovery experiments of certified material and water samples.  相似文献   

3.
A new chelating resin based on chitosan biopolymer modified with 5-sulphonic acid 8-hydroxyquinoline using the spray drying technique for immobilization is proposed. The chelating resin was characterized by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and surface area by nitrogen sorption. The efficiency of the chelating resin was evaluated by the preconcentration of metal ions Cu(II) and Cd(II) present in aqueous samples in trace amounts. The metal ions were previously enriched in a minicolumn and the concentrations of the analytes were determined on-line by flame atomic absorption spectrometry (FAAS). The maximum retention for Cu(II) occurred in the pH range 8-10, and for Cd(II) at pH 7. The optimum flow rate for sorption was found to be 7.2 ml min−1 for the preconcentration of the metal ions. The analytes gave relative standard deviations (R.S.D.) of 0.7 and 0.6% for solutions containing 20 μg l−1 of Cu(II) and 15 μg l−1 of Cd (II), respectively (n=7). The enrichment factors for Cu(II) and Cd (II) were 19.1 and 13.9, respectively, and the limits of detection (LOD) were 0.2 μg l−1 for Cd(II) and 0.3 μg l−1 for Cu(II), using a preconcentration time of 90 s (n=11). The accuracy of the proposed method was evaluated by the metal ion recovery technique, in the analysis of potable water and water from a lake, with recoveries being between 97.2 and 107.3%.  相似文献   

4.
Li Y  Jiang Y  Yan XP 《Talanta》2004,64(3):758-765
A further study on a newly developed flow injection (FI) on-line multiplexed sorption preconcentration (MSP) using a knotted reactor coupled with flame atomic absorption spectrometry (FAAS) was carried out to demonstrate its applicability and limitation for trace element determination. For this purpose, Cr(VI), Cu(II), Ni(II) and Co(II) were selected as the analytes, and detailed comparison was made between the MSP-FAAS and conventional FI on-line sorption preconcentration FAAS in respect to retention efficiency and linear ranges of absorbance versus sample loading flow rate and total preconcentration time. Introduction of an air-flow for removal of the residual solution in the KR after each sub-injection in the MSP procedure played a decisive role in the improvement of retention efficiency. The linearity of absorbance versus sample loading flow rate or total preconcentration time was extended to a more degree for the metal ions with less stability of their PDC (pyrrolidine dithiocarbamate) complexes than those with more stable PDC complexes. It seems that the MSP procedure behaves advantages beyond the inflection points in the diagrams of absorbance versus total preconcentration time and sample loading flow rate obtained by conventional (a single continuous) preconcentration procedure. With a sample loading flow rate of 6.0 ml min−1 and a total preconcentration time of 180 s, the retention efficiencies were increased from 25, 46, 41 and 63% with a single continuous sorption preconcentration to 44, 78, 65 and 75% with a six sub-injection preconcentration procedure for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The detection limits were 0.40, 0.33, 0.31 and 0.26 μg l−1 for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The precision (R.S.D.) for eleven replicate determination of 2 μg l−1 Cr(VI), Co(II) and Ni(II), and 1 μg l−1 Cu(II), was 2.1, 4.1, 2.6 and 1.7%, respectively.  相似文献   

5.
An on-line flow injection (FI) preconcentration-electrothermal atomic absorption spectrometry (ETAAS) method is developed for trace determination of chromium in drinking water samples by sorption on a conical minicolumn packed with activated carbon (AC) at pH 5.0. The chromium was removed from the minicolumn with 1.0% (v/v) nitric acid. An enrichment factor (EF) of 35-fold for a sample volume of 10 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 3.0 ng l−1. The precision for 10 replicate determinations at the 0.5 μg l−1 Cr level was 4.0% relative standard deviation (R.S.D.), calculate with the peak heights obtained. The calibration graph using the preconcentration system for chromium was linear with a correlation coefficient of 0.9992 at levels near the detection limits up to at least 50 μg l−1. The method was successfully applied to the determination of Cr(III) and Cr(VI) in drinking water samples.  相似文献   

6.
Marta Knap 《Talanta》2007,71(1):406-410
An on-line preconcentration procedure for the determination of manganese using flow-injection approach with flame atomic absorption spectrometry as a detection method is described. The proposed method is based on the complexation between Mn(II) and 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP). Two approaches were investigated for enrichment of manganese; the formation of Mn-TCPP complex in a solution followed by its retention on a sorbent and the sorption of manganese ions onto the TCPP-modified resin. The best results was obtained for the first approach when 10−5 M reagent was on-line mixed with an aqueous sample solution and passed through the microcolumn packed with anion-exchange resin Amberlite IRA-904 for 5 min. The sorbed complexes were then eluted with 0.5 ml of 2 M HNO3. A good precision (2.2-3.1% R.S.D. for 50 μg l−1 manganese) and the enrichment factor of 30 were obtained with the detection limit of 12 μg l−1 for 5 min loading time. The interference of anions and cations has been studied to optimize the conditions and the method was applied for determination of manganese in natural water samples. The results obtained by FI-FAAS and ETAAS (as a reference method) were not statistically different for a significance level of 0.05.  相似文献   

7.
The operational characteristics of a novel poly(tetrafluoroethylene) (PTFE) bead material, granular Algoflon®, used for separation and preconcentration of metal ions via adsorption of on-line generated non-charged metal complexes, were evaluated in a sequential injection (SI) system furnished with an external packed column and in a sequential injection lab-on-valve (SI-LOV) system. Employed for the determination of cadmium(II), complexed with diethyldithiophosphate (DDPA), and detection by electrothermal atomic absorption spectrometry (ETAAS), its performance was compared to that of a previously used material, Aldrich PTFE, which had demonstrated that PTFE was the most promising for solid-state pretreatments. By comparing the two materials, the Algoflon® beads exhibited much higher sensitivity (1.6107 μg l−1 versus 0.2956 μg l−1 per integrated absorbance (s)), and better retention efficiency (82% versus 74%) and enrichment factor (20.8 versus 17.2), although a slightly smaller linear dynamic range (0.05-0.25 μg l−1 versus 0.05-1.00 μg l−1). Moreover, no flow resistance was encountered under the experimental conditions used. The results obtained on three standard reference materials were in good agreement with the certified values.  相似文献   

8.
《Analytica chimica acta》2003,481(2):283-290
In the present paper, an on-line system for preconcentration and determination of zinc by Flame Atomic Absorption Spectrometry (FAAS) is proposed. It is based in the sorption of zinc(II) ions on a minicolumn packed with polyurethane foam loaded with 2-[2′-(6-methyl-benzothiazolylazo)]-4-bromophenol (Me-BTABr) reagent. Chemical and flow variables as pH effect, sample flow rate and eluent concentration were optimized using univariate methodology. The results demonstrated that zinc can determinate using the sample pH in the range of 6.5-9.2, sample flow rate of 6.0 ml min−1, and the elution step using 0.10 mol l−1 hydrochloric acid solution at flow rate of 5.5 ml min−1. In these conditions, an enrichment factor of 23 and a sampling rate of 48 samples per hour were achieved. The detection limit (DL, 3σ) as IUPAC recommendation was 0.37 μg l−1 and the precision (assessed as the relative standard deviation, R.S.D.) reached values of 5.9-1.8% in zinc solutions of 1.0-10.0 μg l−1 concentration, respectively. The method was successfully applied to the determination of trace amounts of zinc in natural water samples from Salvador (Brazil).  相似文献   

9.
This paper reports the development of a new strategy for low-level determination of copper in water samples by using a flow-injection system coupled to solid-phase extraction (SPE) using flame atomic absorption spectrometry (F AAS) as detector. In order to preconcentrate copper from samples, a minicolumn packed with a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis-(4-vinyl-phenyl)-methyl]-pyrrolidine-1-carboxylic acid ethyl ester was used and the synthesis procedure is described. System operation is based on the on-line retention of Cu(II) ions at pH 9.0 ± 0.2 in a such minicolumn with posterior analyte elution with 2 mol l−1 HCl directly to the F AAS nebulizer. The influence of several chemical (sample pH, buffer concentration, HCl eluent concentration and effect of the ionic strength) and flow (sample and eluent flow rates and preconcentration time) variables that could affect the performance of this system were investigated as well as the possible interferents. At optimized conditions, for 2 min of preconcentration time (13.2 ml of sample volume), the system achieved a detection limit of 1.1 μg l−1, a R.S.D. 1% at 20 μg g l−1 and an analytical throughput of 25 h−1, whereas for 4 min of preconcentration time (26.4 ml of sample volume), a detection limit of 0.93 μg l−1, a R.S.D. 5.3% at 5 μg l−1 and a sampling frequency of 13 h−1 were reported.  相似文献   

10.
A flow injection (FI) on-line sorption preconcentration procedure utilizing a packed column reactor and combined with electrothermal atomic absorption spectrometry (ETAAS) is proposed for the determination of low levels of Cr(VI) in water samples. Polytetrafluoroethylene (PTFE) beads packed in a mini-column is used as sorbent material. The complex formed between Cr(VI) and ammonium pyrrolidine dithiocarbamate (APDC) is sorbed on the PTFE beads, and is subsequently eluted by an air-monosegmented discrete zone of absolute ethanol (35 μl), the analyte being quantified by ETAAS.The preconcentration procedure using the proposed column significantly enhances the preconcentration efficiency as compared with the preconcentration approach incorporating an open tubular PTFE knotted reactor (KR). Comparing the two procedure for equal surface sorption area, the advantages of using a packed column are observed in terms of limit of detection, enrichment factor and retention efficiency. With a preconcentration time of 60 s, and a sample flow rate of 5.0 ml l−1, the enrichment factor (30.1) and the retention efficiency (24.1%) were doubled, yielding a detection limit (3σ) as low as 8.8 ng l−1. The sample frequency was 16.7 h−1. The concentration efficiency was 8.38 and the precision was 1.05% at 0.5 μg l−1 of Cr(VI). The proposed column has been applied successfully to the analysis of natural water and synthetic seawater. Its performance was verified by the analysis of two certified Cr(VI)-reference materials and by recovery measurements on spiked samples.  相似文献   

11.
A robust flow injection (FI) on-line liquid-liquid extraction (LLE) preconcentration/separation system associated with a newly designed gravitational phase separator, coupled to flame atomic absorption spectrometry (FAAS) was developed. The performance of the system was illustrated for cadmium determination at the μg l−1 level. The non-charged cadmium complex with ammonium pyrrolidine dithiocarbamate (APDC) was extracted on-line into isobutyl methyl ketone (IBMK). The organic phase was effectively separated from a large volume of aqueous phase and is led into a 100 μl loop of an injection valve before its introduction into the nebulizer. The system was optimized and offered good performance characteristics with unlimited life time of phase separator, greater flow rate ratios and improved flexibility, as compared with other solvent extraction preconcentration systems. With a sampling frequency of 33 h−1, the enhancement factor was 155, the detection limit was 0.02 μg l−1, the relative standard deviation was 3.2% at 2.0 μg l−1 Cd concentration level and the calibration curve was linear over the concentration range 0.06-6.0 μg l−1. The accuracy of the proposed method was evaluated by analyzing a certified reference material of water and by recovery measurements on spiked samples. Finally, it was successfully applied to the analysis of tapwater, river and seawater samples.  相似文献   

12.
A flow injection analysis (FIA) method using on-line separation and preconcentration with a novel metal scavenger beads, QuadraSil™ TA, has been developed for the ICP-OES determination of traces of palladium. QuadraSil TA contains diethylenetriamine as a functional group on spherical silica beads and shows the highest selectivity for Pd(II) at pH 1 (0.1 mol l−1 hydrochloric acid) solution. An aliquot of the sample solution prepared as 0.1 mol l−1 in hydrochloric acid was passed through the QuadraSil TA column. After washing the column with the carrier solution, the Pd(II) retained on the column was eluted with 0.05 mol l−1 thiourea solution and the eluate was directly introduced into an ICP-OES. The proposed method was successfully applied to the determination of traces of palladium in JSd-2 stream sediment certified reference material [0.019 ± 0.001 μg g−1 (n = 3); provisional value: 0.0212 μg g−1] and SRM 2556 used auto catalyst certified reference material [315 ± 4 μg g−1 (n = 4); certified value: 326 μg g−1]. The detection limit (3σ) of 0.28 ng ml−1 was obtained for 5 ml of sample solution. The sample throughputs for 5 ml and 100 μl of the sample solutions were 10 and 15 h−1, respectively.  相似文献   

13.
Silk fibroin is a kind of polypeptide with functional amino acids in its structure. The electric charges in its molecular chains originating from the dissociation of acidic groups, i.e., hydroxyl, phenol and carboxyl, provide vast potentials for the retention of metal species of interest. In this study, the selective retention of Cu2+ with silk fibroin at pH 6.0 was investigated and a novel on-line procedure for separation/preconcentration of Cu2+ from complex sample matrices was thus developed by using a sequential injection system with an electrothermal atomic absorption spectrometry. A novel concept of enrichment index (EI), i.e., defined as enrichment factor (EF) obtained by consuming unity of sample volume (ml), was proposed for evaluating the enrichment efficiency of a flow-based preconcentration procedure. With a sampling volume of 900 μl, an EI of 30.3 (EF = 27.3) was achieved, which was much improved as compared to that of reported procedures. A detection limit of 8.0 ng l−1 was achieved within a linear range of 0.025-1.5 μg l−1 along with a precision of 2.2% R.S.D. at 0.5 μg l−1. The practical applicability of this procedure was validated by analyzing a certified reference material of riverine water (GBW08608) and a certified reference material of seawater (NASS-5) achieving satisfactory agreements between the certified and the obtained values. A spiking recovery was also performed by using a cave water sample.  相似文献   

14.
Dissolved reactive phosphorus (DRP) was determined as orthophosphate (PO4-P) in fresh and saline water samples by flow-injection (FI) amperometry, without and with in-valve column preconcentration. Detection is based on reduction of the product formed from the reaction of DRP with acidic molybdate at a glassy carbon working electrode (GCE) at 220 mV versus the Ag/AgCl reference electrode. A 0.1 M potassium chloride solution was used as both supporting electrolyte and eluent in the preconcentration system. For the FI configuration without preconcentration, a detection limit of 3.4 μg P l−1 and sample throughput of 70 samples h−1 were achieved. The relative standard deviations for 50 and 500 μg P l−1 orthophosphate standards were 5.2 and 5.9%, respectively. By incorporating an ion exchange preconcentration column, a detection limit of 0.18 μg P l−1 was obtained for a 2-min preconcentration time (R.S.D.s for 0.1 and 1 μg P l−1 standards were 22 and 1.0%, respectively). Potential interference from silicate, sulfide, organic phosphates and sodium chloride were investigated. Both the systems were applied to the analysis of certified reference materials and water samples.  相似文献   

15.
Ibrahim S.I. Adam 《Talanta》2009,77(3):1160-1164
A newly simple flow injection wetting-film extraction system coupled to flame atomic absorption spectrometry (FAAS) has been developed for trace amount of cadmium determination. The sample was mixed on-line with sodium diethyl dithiocarbamate and the produced non-charged Cd(II)-diethyl dithiocarbamate (DDTC) chelate complex was extracted on the thin film of diisobutyl ketone (DIBK) on the inner wall of the PTFE extraction coil. The wetting-film with the extracted analyte was then eluted by a segment of the cover solvent, and transported directly to the FAAS for evaluation. All the important chemical and flow parameters were optimized. Under the optimized conditions an enhancement factor of 35, a sample frequency of 22 h−1 and a detection limit of cL = 0.7 μg l−1 Cd(II) were obtained for 60 s preconcentration time. The calibration curve was linear over the concentration range 1.5-45.0 μg l−1 Cd(II) and the relative standard deviation, R.S.D. (n = 10) was 3.9%, at 10.0 μg l−1 concentration level. The developed method was successfully applied to cadmium determination in a variety of environmental water samples as well as waste-water sample.  相似文献   

16.
The use of a permeation liquid membrane system for the preconcentration and separation of nickel in natural and sea waters and subsequent determination by atomic absorption spectroscopy is presented. 2-Hydroxybenzaldehyde N-ethylthiosemi-carbazone (2-HBET) in toluene is used as the active component of the liquid membrane. A study strategy based on a simplex design has been followed. Several chemical and physical parameters were optimized. Maximum permeation coefficient was obtained at a feed solution pH of 9.4, 0.3 mol l−1 of HNO3 in the stripping solution and 1.66 mmol l−1 of 2-HBTE in toluene as carrier. The precision of the method was 4.7% at 95% significance level and a detection limit of 0.012 μg l−1 of nickel was achieved. The preconcentration procedure showed a linear response within the studied concentration range from 3 to 500 μg l−1 of Ni in the feed solution. The method was validated with different spiked synthetic seawater and certified reference water samples: TMDA-62 and LGC 6016, without matrix interferences and showing good concordance with the certified values, being the relative errors −5.9% and −2.2%, respectively. Under optimal conditions, the average preconcentration yield for real seawater samples was 98 ± 5%, with a nickel preconcentration factor of 20.83 and metal concentrations ranging between 2.8 and 5.4 μg l−1.  相似文献   

17.
A flow system was coupled to a graphite furnace with a platform coated with tungsten-rhodium permanent chemical modifier for in-line separation and preconcentration of copper by employing a minicolumn loaded with 1-(2-tiazolylazo)-2-naphthol (TAN) immobilized on C18-bonded silica fixed in the tip of the autosampler arm. Elution was made by sampling 35 μl of 0.50 mol l−1 HCl with further delivering into a coated platform. Remarkable improvements in both selectivity and sensitivity were observed. Copper(II) was effectively separated from solutions containing up to 20 g l−1 Na+; 10 g l−1 K+, Ca2+ and Mg2+; 1.0 g l−1 Fe3+ and Zn2+. For a sample flowing at 3.0 ml min−1 and a loading of 60 s, the detection limit was estimated as 5 ng l−1 Cu(II) at the 99.7% confidence level, and an enrichment factor of 33 was calculated. Coefficient of variation was estimated as 4% for a 0.30 μg l−1 copper solution (n=20). The W-Rh permanent chemical modifier was used to improve system stability, analytical performance and atomizer lifetime. More than 1500 firings were carried out with the same atomizer without significant variations in sensitivity and precision. On account of the reagent immobilization, its consumption was lower than 0.2 μg per determination. In addition, TAN purification was unnecessary.  相似文献   

18.
A flow injection on-line sorption preconcentration system has been synchronously coupled to an electrothermal atomic absorption spectrometry (ETAAS) system for the selective determination of trace amounts of Sb(III) in water, soil and plant. The determination was achieved by selective complexation and sorption of Sb(III) with [1,5-bis(2-pyridyl)-3-sulphophenyl methylene thiocarbonohydarzide (PSTH) immobilized on an anion-exchange resin (Dowex 1× 8-200)] at a wide range of pH, quantitative elution with 50 μl of 2 M HNO3 and subsequent ETAAS detection. ETAAS determination of the analyte was performed in parallel with the preconcentration of the next sample. Using a preconcentration time of 60 s and a sample loading flow rate of 2.8 ml min−1, an enhancement factor of 12 was obtained in comparison with direct injection of 50 μl aqueous solution, resulting in a sampling frequency of 31 samples h−1. The detection limit (3 s) was 2 μg l−1 and the precision was 3.1% (R.S.D.) for 11 replicate determinations at 10 μg l−1. The accuracy of the proposed method was demonstrated by analyzing one certified sample and different spiked samples.  相似文献   

19.
Erdem A  Eroğlu AE 《Talanta》2005,68(1):86-92
A selective matrix removal/separation/enrichment method, utilizing a microcolumn of a chelating resin with SH functional groups (Duolite GT-73), was proposed for the determination of Sb(III) in waters by segmented flow injection-hydride generation atomic absorption spectrometry (SFI-HGAAS). The resin was selective to Sb(III) at almost all pH and acidity values employed, whereas Sb(V) was not retained at all and could be determined after a pre-reduction step with l-cysteine. Spike recoveries were tested at various concentration levels in different water types and were found to vary between 85 and 118%. Accuracy of the proposed methodology was checked by analyzing a standard reference material and a good correlation was found between the determined (13.3 ± 1.1 μg l−1) and the certified value (13.79 ± 0.42 μg l−1). The method was applied to several bottled drinking water samples for antimony determination with and without preconcentration and none of the samples were found to contain antimony above the permissible level (5 μg l−1). The characteristic concentration (the concentration of the analyte corresponding to an absorbance of 0.0044) was 0.55 μg l−1 and the 3 s limit of detection (LOD) based on five times preconcentration was 0.06 μg l−1. The applicability of the microcolumn separation/preconcentration/matrix removal method for flow injection systems was also demonstrated.  相似文献   

20.
A new on-line Gd preconcentration and determination system associated to flow injection (FI) method was developed. 2,2′-(1,8-dihydroxy-3,6-disulfonaphthylene-2,7-bisazo) bisbenzenearsonic acid (Arsenazo III) was used as a complexing agent at pH 2.5. A reactor containing the polyamide membrane was used for the retention of the Gd complex by chemofiltration. The complex was then removed from the reactor with buffer solution pH 9. The variables affecting the combined on-line preconcentration-absorptiometric method have been evaluated and optimised. The coupling of the on-line preconcentration and spectrophotometric flow through detection led to a detection limit of 15 μg l−1 for a preconcentration time of 5 min at 2 ml/min. The method was successfully applied to biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号