首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel on-line preconcentration and determination system based on a fiber-packed column was developed for speciation analysis of Cr in drinking water samples prior to its determination by flame atomic absorption spectrometry (FAAS). All variables involved in the development of the preconcentration method including, pH, eluent type, sample and eluent flow rates, interfering effects, etc., were studied in order to achieve the best analytical performance. A preconcentration factor of 32 was obtained for Cr(VI) and Cr(III). The levels of Cr(III) species were calculated by difference of total Cr and Cr(VI) levels. Total Cr was determined after oxidation of Cr(III) to Cr(VI) with hydrogen peroxide. The calibration graph was linear with a correlation coefficient of 0.999 at levels near the detection limit and up to at least 50 μg L−1. The relative standard deviation (R.S.D.) was 4.3% (C = 5 μg L−1 Cr(VI), n = 10, sample volume = 25 mL). The limit of detection (LOD) for both Cr(III) and Cr(VI) species was 0.3 μg L−1. Verification of the accuracy was carried out by the analysis of a standard reference material (NIST SRM 1643e “Trace elements in natural water”). The method was successfully applied to the determination of Cr(III) and Cr(VI) species in drinking water samples.  相似文献   

2.
Li Y  Jiang Y  Yan XP 《Talanta》2004,64(3):758-765
A further study on a newly developed flow injection (FI) on-line multiplexed sorption preconcentration (MSP) using a knotted reactor coupled with flame atomic absorption spectrometry (FAAS) was carried out to demonstrate its applicability and limitation for trace element determination. For this purpose, Cr(VI), Cu(II), Ni(II) and Co(II) were selected as the analytes, and detailed comparison was made between the MSP-FAAS and conventional FI on-line sorption preconcentration FAAS in respect to retention efficiency and linear ranges of absorbance versus sample loading flow rate and total preconcentration time. Introduction of an air-flow for removal of the residual solution in the KR after each sub-injection in the MSP procedure played a decisive role in the improvement of retention efficiency. The linearity of absorbance versus sample loading flow rate or total preconcentration time was extended to a more degree for the metal ions with less stability of their PDC (pyrrolidine dithiocarbamate) complexes than those with more stable PDC complexes. It seems that the MSP procedure behaves advantages beyond the inflection points in the diagrams of absorbance versus total preconcentration time and sample loading flow rate obtained by conventional (a single continuous) preconcentration procedure. With a sample loading flow rate of 6.0 ml min−1 and a total preconcentration time of 180 s, the retention efficiencies were increased from 25, 46, 41 and 63% with a single continuous sorption preconcentration to 44, 78, 65 and 75% with a six sub-injection preconcentration procedure for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The detection limits were 0.40, 0.33, 0.31 and 0.26 μg l−1 for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The precision (R.S.D.) for eleven replicate determination of 2 μg l−1 Cr(VI), Co(II) and Ni(II), and 1 μg l−1 Cu(II), was 2.1, 4.1, 2.6 and 1.7%, respectively.  相似文献   

3.
A new time-based flow injection on-line solid phase extraction method for chromium(VI) and lead determination using flame atomic absorption spectrometry was developed. The use of hydrophobic poly-chlorotrifluoroethylene (PCTFE)-beads as absorbent in on-line preconcentration system was evaluated. Effective formation of ammonium pyrrolidine dithiocarbamate complexes and subsequently retention in PCTFE packed column, was achieved in pH range 1.0-1.6 and 1.5-3.2 for Cr(VI) and Pb(II) ions, respectively. The sorbed analyte was efficiently eluted with isobutyl-methyl-ketone for on-line FAAS determination. The proposed packing material exhibited excellent chemical and mechanical resistance, fast kinetics for adsorption of Cr(VI) and Pb(II) permitting the use of high sample flow rates at least up to 15 mL min−1 without loss of retention efficiency. For a preconcentration time of 90 s, the sample frequency was 30 h−1, the enhancement factor was 94 and 220, the detection limit was 0.4 and 1.2 μg L−1, while the precision (R.S.D.) was 1.8% (at 5 μg L−1) and 2.1% (at 30 μg L−1) for chromium(VI) and lead, respectively. The applicability and the accuracy of the developed method were estimated by the analysis spiked water samples and certified reference material NIST-CRM 1643d (Trace elements in water) and NIST-SRM 2109 (chromium(VI) speciation in water).  相似文献   

4.
A modified SBA-15 mesoporous silica material NH2-SBA-15 was synthesized successfully by grafting γ-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L−1 NH3·H2O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min−1 sample loading (300 s) and an elution flow rate of 2.0 mL min−1 (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 μg L−1 level with a detection limit of 0.2 μg L−1 (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).  相似文献   

5.
A flow injection (FI) on-line sorption preconcentration procedure utilizing a packed column reactor and combined with electrothermal atomic absorption spectrometry (ETAAS) is proposed for the determination of low levels of Cr(VI) in water samples. Polytetrafluoroethylene (PTFE) beads packed in a mini-column is used as sorbent material. The complex formed between Cr(VI) and ammonium pyrrolidine dithiocarbamate (APDC) is sorbed on the PTFE beads, and is subsequently eluted by an air-monosegmented discrete zone of absolute ethanol (35 μl), the analyte being quantified by ETAAS.The preconcentration procedure using the proposed column significantly enhances the preconcentration efficiency as compared with the preconcentration approach incorporating an open tubular PTFE knotted reactor (KR). Comparing the two procedure for equal surface sorption area, the advantages of using a packed column are observed in terms of limit of detection, enrichment factor and retention efficiency. With a preconcentration time of 60 s, and a sample flow rate of 5.0 ml l−1, the enrichment factor (30.1) and the retention efficiency (24.1%) were doubled, yielding a detection limit (3σ) as low as 8.8 ng l−1. The sample frequency was 16.7 h−1. The concentration efficiency was 8.38 and the precision was 1.05% at 0.5 μg l−1 of Cr(VI). The proposed column has been applied successfully to the analysis of natural water and synthetic seawater. Its performance was verified by the analysis of two certified Cr(VI)-reference materials and by recovery measurements on spiked samples.  相似文献   

6.
Hashemi P  Boroumand J  Fat'hi MR 《Talanta》2004,64(3):578-583
Three different agarose-based chelating adsorbents with, respectively, iminodiacetic acid (IDA), tris(2-aminoethyl)amine (TREN) and dipicolylamine (DPA) functional groups and an agarose-based anion exchanger (Q-Sepharose), were studied for the separation and preconcentration of Cr(III) and Cr(VI) species in water. Column recoveries of all the adsorbents were plotted against pH, and it was found that at pH 3.0 the IDA adsorbent selectively adsorbs Cr(III), with a 100 ± 1.0% recovery. The Q-Sepharose, on the other hand, accumulated only Cr(VI) at this pH, again with a recovery of 100 ± 1.0%. A dual column system was accordingly designed, using the two adsorbents in tandem, for the separation and preconcentration of the chromium species.The effects of pH, sample flow rate, column length, eluent type, eluent volume, acid concentration and interfering ions on the recoveries of Cr(III) and Cr(VI) were carefully studied. It was shown that by passing test solutions, at pH 3.0; through the dual column system, the two chromium species could be individually collected on the columns, respectively, and eluted, one after the other. A portion of 2 mol l−1 hydrochloric acid was used for elution of each column before final measurement by flame AAS method. A preconcentration factor of 12, a detection limit of 7.7 ± 0.1 μg l−1 and a precision expressed as relative standard deviation of 0.4% (at 0.3 mg l−1) were achieved for six replicates.Application of the developed method to the determination of chromium species in spiked river and tap water and wastewater samples, from a dye production plant, resulted in excellent agreements with accepted concentrations.  相似文献   

7.
Themelis DG  Kika FS  Economou A 《Talanta》2006,69(3):615-620
A new rapid and sensitive FI assay is reported for the simultaneous direct spectrophotometric determination of trace Cr(VI) and Cr(III) in real samples. The method is based upon the reaction of Cr(VI) with chromotropic acid (CA) in highly acidic medium to form a water-soluble complex (λmax = 370 nm). Cr(III) reacts with CA only after its on-line oxidation to Cr(VI) by alkaline KIO4. The determination of each chromium species in the sample was achieved by absorbance differences. The calibration curves were linear over the range 3-4000 μg l−1 and 30-1200 μg l−1 for Cr(VI) and Cr(III), respectively, while the precision close to the quantitation limit was satisfactory in both cases (sr = 3.0% for Cr(VI) and 4.0% for Cr(III) (n = 10) at 10 and 50 μg l−1 level, respectively). The method developed proved to be adequately selective and sensitive (cL = 1 and 10 μg l−1 for Cr(VI) and Cr(III), respectively). The application of the method to the analysis of water samples (tap and mineral water) gave accurate results based on recovery studies (93-106%). Analytical results of real sample analysis were in good agreement with certified values.  相似文献   

8.
The concentrations of chromium (III) and (VI) in fly ash from nine Australian coal fired power stations were determined. Cr(VI) was completely leached by extraction with 0.01 M NaOH solution and the concentration was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). This was confirmed by determining Cr(III) and Cr(VI) in the extracts of fly ash that had been spiked with chromium salts. These analytical measurements were done using a combination of ion-exchange chromatography and ICP-AES. The elutant was 0.05 M HNO3 containing 0.5%-CH3OH. When the column was operated at a flow rate of 1.2 ml min−1 and samples were injected by use of a sample loop with a volume of 100 μl, Cr(III) and Cr(VI) in sample solution was exclusively separated within approximately 10 min. The detection limits (3σ) were 5 ng for Cr(III) (0.050 mg l−1) and 9 ng for Cr(VI) (0.090 mg l−1), respectively. A relative standard deviation of 1.9% (n = 6) was obtained for the determination by IC-ICP-AES of 0.25 mg l−1 Cr(III) and Cr(VI).  相似文献   

9.
Maltez HF  Carasek E 《Talanta》2005,65(2):537-542
A procedure for chromium speciation by F AAS using a flow system has been proposed. In this system, Cr(III) and Cr(VI) ions were adsorbed sequentially onto a mini-column packed with silica gel modified with zirconium phosphate and a mini-column packed with silica gel modified with zirconium oxide, respectively. The elution of Cr(III) and Cr(VI) was made with, respectively, nitric acid solution and tris(hydroxymethyl)methylamine (THAM) solution in reverse mode and determination by flame atomic absorption spectrometry without interference of the matrix. Chemical and flow variables as well as concomitant ions were studied in the developed procedure. The enrichment factor for Cr(III) and Cr(VI) was 20.8 and 24.9, respectively, using a preconcentration time of 3.75 min. The limit of detection for Cr(III) and Cr(VI) was 1.9, and 2.3 μg l−1, respectively. The precision of the method, evaluated as the relative standard deviation in solutions containing 100 μg l−1 of chromium species, by analyzing a series of seven replicates, was lower than 3.0%. The accuracy was assessed through recovery experiments of water samples and using another methodology.  相似文献   

10.
A new, simple, rapid and sensitive separation, preconcentration and speciation procedure for chromium in environmental liquid and solid samples has been established. The present speciation procedure for Cr(III) and Cr(VI) is based on combination of carrier element-free coprecipitation (CEFC) and flame atomic absorption spectrometric (FAAS) determinations. In this method a newly synthesized organic coprecipitant, 5-chloro-3-[4-(trifluoromethoxy) phenylimino]indolin-2-one (CFMEPI), was used without adding any carrier element for coprecipitation of chromium(III). After reduction of chromium(VI) by concentrated H2SO4 and ethanol, the procedure was applied for the determination of total chromium. Chromium(VI) was calculated as the difference between the amount of total chromium and chromium(III). The optimum conditions for coprecipitation and speciation processes were investigated on several commonly tested experimental parameters, such as pH of the solution, amount of coprecipitant, sample volume, etc. No considerable interference was observed from the other investigated anions and cations, which may be found in natural water samples. The preconcentration factor was found to be 40. The detection limit for chromium(III) corresponding to three times the standard deviation of the blank (N = 10) was found 0.7 μg L−1. The present procedure was successfully applied for speciation of chromium in several liquid and solid environmental samples. In order to support the accuracy of the method, the certified reference materials (CRM-TMDW-500 Drinking Water and CRM-SA-C Sandy Soil C) were analyzed, and standard APDC-MIBK liquid-liquid extraction method was performed. The results obtained were in good agreement with the certified values.  相似文献   

11.
A highly sensitive, selective and simple kinetic method was developed for the determination of dissolved chromium species based on the catalytic effect of Cr(III) and/or Cr(VI) on the oxidation of 2-amino-5-methylphenol (AMP) with H2O2. The fixed time and initial rate variants were used for kinetic spectrophotometric measurements by tracing the oxidized product at 400 nm for 10 min after starting the reaction. Boric acid and Tween-40 exerted pronounced activating and micellar sensitizing effects on the studied redox reaction, respectively. The optimum reaction conditions were: 3.0 mmol l−1 AMP, 0.45 mol l−1 H2O2, 0.50 mol l−1 boric acid, 4 v/v% Tween-40, 10 mmol l−1 phosphate buffer and pH 6.45 ± 0.02 at 35 °C. Both Cr(III) and Cr(VI) ions exerted the same catalytic effect on the studied reaction. Linear calibration graphs were obtained for the determination of up to 6.0 ng ml−1 Cr with detection limits of 0.054 and 0.10 ng ml−1 Cr; following the fixed time and initial rate methods, respectively. The proposed method was successfully applied to the speciation and determination of trace levels of dissolved Cr(III) and Cr(VI) in natural and effluents of industrial waste water. The total dissolved Cr(III) and Cr(VI) species was determined first. In a second run, Cr(VI) was determined alone after precipitation of Cr(III) ions in presence of Al(OH)3 collector, where Cr(III) is then determined by difference. Moreover, published catalytic-spectrophotometric methods for chromium determination were reviewed.  相似文献   

12.
This study proposes the dual electromembrane extraction followed by high performance liquid chromatography for selective separation-preconcentration of Cr(VI) and Cr(III) in different environmental samples. The method was based on the electrokinetic migration of chromium species toward the electrodes with opposite charge into the two different hollow fibers. The extractant was then complexed with ammonium pyrrolidinedithiocarbamate for HPLC analysis. The effects of analytical parameters including pH, type of organic solvent, sample volume, stirring rate, time of extraction and applied voltage were investigated. The results showed that Cr(III) and Cr(VI) could be simultaneously extracted into the two different hollow fibers. Under optimized conditions, the analytes were quantified by HPLC instrument, with acceptable linearity ranging from 20 to 500 μg L−1 (R2 values ≥ 0.9979), and repeatability (RSD) ranging between 9.8% and 13.7% (n = 5). Also, preconcentration factors of 21.8–33 that corresponded to recoveries ranging from 31.1% to 47.2% were achieved for Cr(III) and Cr(VI), respectively. The estimated detection limits (S/N ratio of 3:1) were less than 5.4 μg L−1. Finally, the proposed method was successfully applied to determine Cr(III) and Cr(VI) species in some real water samples.  相似文献   

13.
In this study a method for the determination of low concentrations of silver in waters using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry (FAAS) was developed. Moringa oleifera seeds were used as a biosorbent material. Chemical and flow variables of the on-line preconcentration system such as sample pH and flow rate, preconcentration time, eluent concentration and sorbent mass were studied. The optimum preconcentration conditions were obtained using sample pH in the range of 6.0-8.0, preconcentration time of 4 min at a flow rate of 3.5 mL min− 1, 0.5 mol L− 1 HNO3 eluent at a flow rate of 4.5 mL min− 1 and 35 mg of sorbent mass. With the optimized conditions, the preconcentration factor, precision, detection limit and sample throughput were estimated as 35 (for preconcentration of 14 mL sample), 3.8% (5.0 μg L− 1, n = 7), 0.22 μg L− 1 and 12 samples per hour, respectively. The developed method was successfully applied to mineral water and tap water, and accuracy was assessed through analysis of a certified reference material for water (APS-1071 NIST) and recovery tests, with recovery ranging from 94 to 101%.  相似文献   

14.
A novel in-capillary reduction and capillary electrophoretic (CE)-chemiluminescence (CL) method was developed for the sensitive and selective determination of chromium(III) and chromium(VI). The proposed method was based on the in-capillary reduction of Cr(VI) with acidic H2O2 to form Cr(III) using the zone-passing technique and chemiluminescence detection of Cr(III). The sample [Cr3+ and CrO42−], hydrochloric acid, and H2O2 (reductant) solution segments were injected for specified periods of time in this order from the anodic end of a capillary, followed by application of an appropriate running voltage between both ends. As both chromium species have opposite charges, Cr3+ migrates to the cathode while CrO42− ion, moving oppositely to the anode, reacts with acidic H2O2, resulted in formation of Cr3+. Based on the migration time difference of both Cr3+ ions, they were separated by zone electrophoresis. Running buffer was composed of 0.02 mol l−1 HAc-NaAc (pH 4.7) with 1×10−3 mol l−1 EDTA. Parameters affecting CE-CL separation and detection, such as reductant concentration, mixing mode of the analytes with CL reagent, CL reaction reagent pH and concentration, stability of luminol-hydrogen peroxide mixed solution were optimized. The limits of detection for chromium(III) and chromium(VI) (3σ) were 6×10−13 mol l−1 (mass concentration 12 zmol) and 8×10−12 mol l−1 (160 zmol), respectively. This method offered potential advantages of simplicity, sensitivity, selectivity and applicability to the determination of Cr(III) and Cr(VI) in environmental water.  相似文献   

15.
Manuela L. Kim 《Talanta》2009,77(3):1068-93
An hybrid mesoporous material synthesised in our laboratories for solid phase extraction (SPE) in flow through systems has been used for analytical purposes. The solid was obtained from mesoporous silica MCM-41 functionalized with 3-aminopropyltriethoxy silane by Sol-Gel methodology. In order to exploit the large sorption capacity of the material together with the possibility of modeling it for anions retention, a microcolumn (MC) filled with the solid was inserted in a flow system for preconcentration of Cr(VI) and its determination at ultratrace levels in natural waters. The analytical methodology involved a reverse flow injection system (rFI) holding a MC filled with the solid for the analyte extraction. Elution and colorimetric detection were carried out with 1-5 diphenylcarbazide (DPC) in sulfuric acid. DPC produced the reduction of Cr(VI) to Cr(III) together with the generation of a cationic red complex between Cr(III) and 1-5 diphenylcarbazone which was easily eluted and detected with a visible spectrophotometer. Moreover, the filling material got ready for the next sample loading remaining unspoiled for more than 300 cycles.The effect of several variables on the analytical signal as well as the influence of cationic and anionic interferences were discussed. Particular attention was given to sulfuric acid interference since it is the required media for the complex generation.Under optimal conditions, 99.8% of Cr(VI) recovery was obtained for a preconcentration time of 120 s (sample and DPC flow rates = 1 mL min−1) and an elution volume of 250 μL. The limit of detection (3 s) was found to be 0.09 μg L−1 Cr(VI) with a relative standard deviation (n = 10, 3 μg L−1) of 1.8.Since no Cr(III) was retained by the solid material and Cr(VI) was completely adsorbed, electrothermal atomic absorption spectrometry (ET AAS) determinations of Cr(III) were also performed by simply measuring its concentration at the end of the microcolumn after Cr(VI) retention by the mesoporous solid.Applications to the determination of Cr(VI) and Cr(III) in natural waters and the validation of the methodology were also studied.  相似文献   

16.
On-line preconcentration system for the selective, sensitive and simultaneous determination of chromium species was investigated. Dual mini-columns containing chelating resin were utilized for the speciation and preconcentration of Cr(III) and Cr(VI) in water samples. In this system, Cr(III) was collected on first column packed with iminodiacetate resin. Cr(VI) in the effluent from the first column was reduced to Cr(III), which was collected on the second column packed with iminodiacetate resin. Hydroxyammonium chloride was examined as a potential reducing agent for Cr(VI) to Cr(III).The effects of pH, sample flow rate, column length, and interfering ions on the recoveries of Cr(III) were carefully studied. Five millilitres of a sample solution was introduced into the system. The collected species were then sequentially washed by 1 M ammonium acetate, eluted by 2 M nitric acid and measured by ICP-AES. The detection limit for Cr(III) and Cr(VI) was 0.08 and 0.15 μg l−1, respectively. The total analysis time was about 9.4 min.The developed method was successfully applied to the speciation of chromium in river, tap water and wastewater samples with satisfied results.  相似文献   

17.
A new method has been developed for the determination of gold based on separation and preconcentration with a microcolumn packed with nanometer TiO2 immobilized on silica gel (immobilized nanometer TiO2) prior to its determination by flame atomic absorption spectrometry. The optimum experimental parameters for preconcentration of gold, such as pH of the sample, sample flow rate and volume, eluent and interfering ions, have been investigated. Gold could be quantitatively retained by immobilized nanometer TiO2 in the pH range of 8-10, then eluted completely with 0.1 mol L−1 HNO3. The detection limit of this method for Au was 0.21 ng mL−1 with an enrichment factor of 50, and the relative standard deviation (R.S.D.) was 1.8% at the 100 ng mL−1 Au level. The method has been applied for the determination of trace amounts of Au in geological and water samples with satisfactory results.  相似文献   

18.
The use of organic solvents to increase metal ion determination sensitivity by atomic absorption spectrophotometry with flame is quite common. The most employed organic solvent is 4-methyl-2-pentanona (methylisobutylketone, MIBK) which optimizes sample vaporization and combustion. In this work, we present the use of a homogeneous mixture of water-ethanol—MIBK solvents (1:14:10 v/v, respectively), named the single-phase solution instead of employing pure organic solvents to determine chromium (III) ions by atomic absorption spectrophotometry with flame. The analytical calibration curve in single-phase solution evaluated up to 8 μg ml−1 was linear and was described as Abs=0.0048 CCr(III)-0.0010 (r2=0.9998). Stability in the measurement as well as an increase in sensitivity more than twice as high when compared to determinations exclusively made in aqueous solutions were observed. The exactness of the determinations was evaluated with the same steel standards.  相似文献   

19.
A study was undertaken to evaluate Saccharomyces cerevisiae as a substrate for the biosorption of Cr(III) and Cr(VI) aiming to the selective determination of these species in aqueous solutions. The yeast cells were covalently immobilised on controlled pore glass (CPG), packed in a minicolumn and incorporated in an on-line flow injection system. The effect of chemical and physical variables affecting the biosorption process was tested in order to select the optimal analytical conditions for the Cr retention by S. cerevisiae. Cr(III) was retained by the immobilised cells and Cr(VI) were retained by CPG. The speciation was possible by selective and sequential elution of Cr(III) with 0.05 mol L−1 HCl and 2.0 mol L−1 HNO3 for Cr(VI). The influence of some concomitant ions up to 20 mg L−1 was also tested. Quantitative determinations of Cr were carried out by means of inductively coupled plasma optical emission spectrometry (ICP OES). Preconcentration factors of 12 were achieved for Cr(III) and 5 for Cr(VI) when 1.7 mL of sample were processed reaching detection limits of 0.45 for Cr(III) and 1.5 μg L−1 for Cr(VI). The speciation of inorganic Cr in different kinds of natural waters was performed following the proposed method. Spiked water samples were also analysed and the recoveries were in all cases between 81 and 103%.  相似文献   

20.
An on-line flow injection (FI) preconcentration-electrothermal atomic absorption spectrometry (ETAAS) method is developed for trace determination of chromium in drinking water samples by sorption on a conical minicolumn packed with activated carbon (AC) at pH 5.0. The chromium was removed from the minicolumn with 1.0% (v/v) nitric acid. An enrichment factor (EF) of 35-fold for a sample volume of 10 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 3.0 ng l−1. The precision for 10 replicate determinations at the 0.5 μg l−1 Cr level was 4.0% relative standard deviation (R.S.D.), calculate with the peak heights obtained. The calibration graph using the preconcentration system for chromium was linear with a correlation coefficient of 0.9992 at levels near the detection limits up to at least 50 μg l−1. The method was successfully applied to the determination of Cr(III) and Cr(VI) in drinking water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号