首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this work, a novel La(III) membrane sensor based on 8-amino-N-(2-hydroxybenzylidene)naphthylamine (AIP) is presented. This electrode reveals good selectivity for La3+ over a wide variety of lanthanides metal ions. Theoretical calculations and conductance study of AIP to lanthanum and some other metal ions were carried out and confirmed selectivity toward La(III) ions. The electrode comprises 7% AIP, 30% PVC, 61% NPOE and 2% KTpClPB. The sensor displays a linear dynamic range between 1.0 × 10−7 and 1.0 × 10−1 M, with a nice Nernstian slope of 20.3 ± 0.3 mV per decade and a detection limit of 8.0 × 10−8 M. The potentiometric response is independent of pH in the range of 4.0-9.0. The proposed sensor posses the advantage of short response time, and especially, very good selectivity towards a large number of cations, such as Sm(III), Ce(III, Pr(III), Yb(III) and Hg(II), low detection limit and wide linear dynamic range in comparison with former ones. The electrode can be used for at least seven weeks without any considerable divergence in the potentials. It was used as an indicator electrode in the potentiometric titration of La(III) ions with EDTA. The sensor was applied to the determination of La(III) ions concentration in binary mixtures. It was also applied for the determination of fluoride ions in mouth wash preparations.  相似文献   

2.
A novel coated wire electrode (CWE) for Al(III) ions is described based on 2-(1H-benzo[d]imidazole-1-yl)-1-phenylethanoneoxime as a new ionophore in carbon-PVC composite. The sensor exhibits significantly enhanced selectivity toward Al3+ ions over the concentration range 4.3 × 10−7 to 5.0 × 10−2 M with a lower detection limit of 2.5 × 10−7 M and a Nernstian slope of 19.41 ± 0.52 mV decade−1 of aluminium activity. This sensor has a short response time of about 10 s and is reproducible and stable for at least forty-five days. This proposed CWE which is designed for the first time revealed good selectivity for Al(III) over a wide variety of other cations. The performance of the sensor is best in the pH range of 3.1-5.5 and it also works well in partially non-aqueous medium. Moreover, the assembly has been successfully used as an indicator electrode in the potentiometric titration of aluminium (III) against EDTA and also in determining Al(III) quantitatively in pharmaceutical and mineral water samples.  相似文献   

3.
The suitability of a xanthone derivative, 1-hydroxy-3-methyl-9H-xanthen-9-one (HMX) as a neutral ionophore for the preparation of a polyvinylchloride (PVC) membrane electrode for aluminum(III) ions was investigated. The prepared electrode exhibits a Nernstian response for Al3+ ions over a wide concentration range (1.0 × 10−6 to 1.6 × 10−1 M) with a limit of detection 6.0 × 10−7 M. It has a relatively fast response time and can be used for at least three months without any considerable divergence in potentials. The proposed membrane electrode revealed very good selectivity for Al3+ ions over a wide variety of other cations and could be used at a working pH range of 3.0-8.5. It was used as an indicator electrode in potentiometric titration of aluminum ions with EDTA and in the determination of Al3+ in different real samples.  相似文献   

4.
A poly(vinyl chloride)-based membrane of 2,9-dimethyl-4,11-diphenyl-1,5,8,12-tetraazacyclotetradeca-1,4,8,11-tetraene (DDTCT) with sodium tetraphenyl borate (STB) as an anion excluder and dibutyl phthalate (DBP), dibutyl butylphosphonate (DBBP), tris(2-ethylhexyl) phosphate (TEP) and tributyl phosphate (TBP) as plasticizing solvent mediators was prepared and investigated as a Ga(III)-selective electrode. The best performance was observed with the membrane having the ligand-PVC-DBP-STB composition 1:4:1:1, which worked well over a wide concentration range (1.45 × 10−6 to 0.1 mol L−1) with a Nernstian slope of 28.7 mV per decade of activity between pH 4.0 and 10.0. This electrode showed a fast response time of 12 s and was used over a period of 100 days with good reproducibility (s = 0.3 mV). The selectivity coefficients for monovalent, divalent and trivalent cations indicate excellent selectivity for Ga(III) ions over a large number of cations. Anions such as Cl and SO42− do not interfere and the electrode also works satisfactorily in partially water-alcohol medium. The practical utility of the membrane sensor has also been observed in solutions contaminated with detergents, i.e., cetyltrimethylammonium bromide and sodium dodecyl sulfate and used for the determination of gallium in nickel alloy, fly-ash and biological samples.  相似文献   

5.
Solution studies on the binding properties of N-2,4-dimethylphenyl-N′-ethylformamidine (amitraz) toward nine lanthanide ions including lanthanum, cerium, neodium, samarium, europium, gadolinium, terbium, dysprosium, ytterbium and some other transition and heavy metal ions such as copper, lead, cobalt, nickel ions, showed a selective 1:1 complexation between amitraz and lanthanum ions. Consequently, amitraz was applied as an ion carrier in construction of a novel poly(vinyl chloride) membrane sensor for La(III). The sensor has a linear dynamic range of 1.0 × 10−1 to 1.0 × 10−7 M with a Nernstian slope of 19.8 ± 0.2 mV per decade and a detection limit of 8.0 × 10−8 M. The proposed sensor displays a fast response time (<8 s), and can be used for at least 2 months without any considerable divergences in the potentials. The La(III) membrane sensor revealed comparatively good selectivity with respect to most of cations including alkaline, alkaline earth, and some transition and heavy metal ions. It could be used in a pH range of 3.0-9.0. The proposed membrane electrode was used as an indicator electrode in the potentiometric titration of La(III) ions with an EDTA solution, and also in the determination of fluoride concentration in some mouth wash preparations.  相似文献   

6.
Huang MR  Rao XW  Li XG  Ding YB 《Talanta》2011,85(3):1575-1584
A novel membrane electrode for Pb(II) ion detection based on semi-conducting poly(m-phenylenediamine) microparticles as a unique solid ionophore was fabricated. The electrode exhibited significantly enhanced response towards Pb(II) over the concentration range from 3.16 × 10−6 to 0.0316 M at pH 3.0-5.0 with a low detection limit of 6.31 × 10−7 M, a high sensitivity displaying a near-Nernstian slope of 29.8 mV decade−1 for Pb(II). The electrode showed a long lifetime of 5 months and a short response time of 14 s. A systematical investigation on the effect of anion excluder and various foreign ions on the selectivity of the electrode by a fixed interference method suggests that all other metal ions hardly ever interfere with the determination of Pb(II) except high concentration Hg(II). The electrode was successfully used as an indicator electrode in the potentiometric titration of Pb(II) with EDTA. Furthermore, the electrode has been used to satisfactorily analyze four types of real-world samples like spiked human urine, spiked tap water, and river water containing interfering ions like Na(I), Ca(II), Mg(II), Zn(II), Pd(II), Fe(III), K(I), Cu(II) and Hg(II) up to 8.04 × 10−4 M, demonstrating fast response, high selectivity, good recovery (96.6-121.4%), good repeatability (RSD 0.31-6.45%), and small relative error (5.0%).  相似文献   

7.
A novel selective membrane electrode for determination of ultra-trace amount of lead was prepared. The PVC membrane containing N,N′-dimethylcyanodiaza-18-cown-6 (DMCDA18C6) directly coated on a graphite electrode, exhibits a Nernstian response for Pb2+ ions over a very wide concentration range (from 1.0×10−2 to 1.0×10−7 M) with a limit of detection of 7.0×10−8 M (∼14.5 ppb). It has a fast response time of ∼10 s and can be used for at least 2 months without any major deviation in potential. The electrode revealed very good selectivity with respect to all common alkali, alkaline earth, transition and heavy metal ions. The proposed sensor was used as an indicator electrode in potentiometric titration of lead ions and in determination of lead in edible oil, human hair and water samples. The proposed sensor was found to be superior to the best Pb2+-selective electrodes reported in terms of detection limit and selectivity coefficient.  相似文献   

8.
Ion-selective electrode (ISE) was designed by dispersing the dysprosium(III) IIP particles in 2-nitrophenyloctyl ether plasticizer and then embedded in polyvinyl chloride matrix. The ISE shows a Nernstian response for dysprosium(III) over a wide concentration range (8.0 × 10−6 to 1.0 × 10−1 M) with a slope of 21.7 mV per decade. The limit of detection was 2 × 10−6 M. This sensor has a very fast response time (∼10 s) and offers high selectivity compared to conventional chemical sensors towards dysprosium(III) with respect to several alkali, alkaline earth and transition metal ions as the selectivity is 10-100-fold better. The sensor was used for determination of dysprosium(III) ions by potentiometric (EDTA) titration and has been successfully demonstrated for the determination of fluoride in mouth wash solution.  相似文献   

9.
Singh AK  Saxena P 《Talanta》2005,66(4):993-998
A new highly Tl(I)-selective PVC membrane electrode based on tetrathia macrocycle 6,7: 14,15-dibenzo-5,8,13,16-tetraoxo-1,4,9,12-tetrathiacyclohexadecane [Bz2O4(16)aneS4] (I) as membrane carrier, o-nitrophenyloctyl ether (o-NPOE) as solvent mediator and potassium tetrakis(p-chlorophenyl)borate (KTpClPB) as lipophilic additive has been developed. The best performance was given by the membrane of macrocycle (I) with composition 3:120:1.5:50 (I:o-NPOE:KTpClPB:PVC). This electrode exhibits a Nernstian response to Tl(I) ions in the concentration range 1.0 × 10−1-2.23 × 10−6 M with a slope of 58.2 mV/decade of concentration and a detection limit of 1.58 × 10−6 M. The response time of the sensor is 12 s and can be used over a period of 4 months with good reproducibility. The proposed electrode revealed good selectivity over a wide variety of other cations including alkali, alkaline earth, heavy and transition metals. The electrode works well over a pH range of 3.2-11.5 and in partially non-aqueous medium with up to 30% organic content. The sensor was also used as an indicator electrode in potentiometric titration of Tl(I) ions with KI solution.  相似文献   

10.
A new PVC membrane electrode for manganese(II) ion based on a recently synthesized Schiff base of 5-[(4-nitrophenylazo)-N-hexylamine]salicylaldimine is reported. The electrode exhibits a Nernstian response for Mn2+ ions over a wide concentration range (4.0 × 10−7 to 1.8 × 10−2 mol L−1) with a slope of 30.1 (±1.0). The limit of detection is 1.0 × 10−7 mol L−1. The electrode has a fast response time (∼10 s), a satisfactory reproducibility and relatively long life time. The proposed sensor revealed good selectivities over a wide variety of other cations include hard and soft metals. This electrode could be used in a pH range of 4.5-7.5. It was used as an indicator electrode in potentiometric titration of manganese(II) ions with EDTA solution.  相似文献   

11.
A new PVC membrane electrode for Co2+ based on N,N′-bis(salicylidene)-3,4-diaminotoluene, an excellent neutral carrier, has been fabricated using sodium tetraphenylborate (NaTPB) as an anionic excluder and dioctylphthalte (DOP) as a solvent mediator. The electrode exhibits a linear potential response in the concentration range of 7.9 × 10−8 to 1.0 × 10−1 M with a slope of 30 ± 0.2 mV per decade. The detection limit of the proposed sensor is 5.0 × 10−8 M and it can be used over a period of 5 months. The proposed sensor revealed good selectivity over a wide variety of other cations including alkali, alkaline earth, heavy and transition metals and could be used in the pH range of 2.0-9.0. This electrode was successfully applied for the determination of Co2+in real samples and as an indicator electrode in potentiometric titration of cobalt ions.  相似文献   

12.
New polymeric membrane (PME) and coated graphite (CGE) samarium(III)-selective electrodes were prepared based on isopropyl 2-[(isopropoxycarbothioyl) disulfanyl]ethanethioate as a suitable neutral ionophore. The electrodes exhibit Nernstian slopes for Sm3+ ions over wide concentration ranges (1.0×10−5 to 1.0×10−1 M for PME and 1.0×10−6 to 1.0×10−1 M for CGE). The PME and CGE have limits of detection of 3.1×10−6 and 5.0×10−7 M, respectively, and response times of about 20 s. The potentiometric responses are independent of the pH of the test solution in the pH range 4.0-7.0. The proposed electrodes revealed good selectivities over a wide variety of other cations including alkali, alkaline earth, transition and heavy metal ions. The electrodes were successfully applied to the recovery of Sm3+ ion from tap water samples and also, as an indicator electrode, in potentiometric titration of samarium(III) ions.  相似文献   

13.
Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L1) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L2) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L2:PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L2 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3 × 10−8 mol L−1 for PME and 7.7 × 10−9 mol L−1 for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples.  相似文献   

14.
A polyvinyl chloride (PVC) based membrane sensor for cerium ions was prepared by employing N,N′-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine as an ionophore, oleic acid (OA) as anion excluder and o-nitrophenyloctyl ether (o-NPOE) as plasticizer. The plasticized membrane sensor exhibits a Nernstian response for Ce(III) ions over a wide concentration range (1.41 × 10−7 to 1.0 × 10−2 M) with a limit of detection as low as 8.91 × 10−8 M. It has a fast response time (<10 s) and can be used for 4 months. The sensor revealed a very good selectivity with respect to common alkali, alkaline earth and heavy metal ions. The response of the proposed sensor is independent of pH between 3.0 and 8.0. It was used as an indicator electrode in potentiometric titration of fluoride, carbonate and oxalate anions and determination of cerium in simulated mixtures.  相似文献   

15.
The 2,6-diphenyl-4-benzo-9-crown-3-pyridine (DPCP) was used as an excellent ionophore in construction of a coated graphite poly(vinyl chloride) (PVC)-based membrane sensor. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 60% o-nitrophenyloctyl ether (NPOE), 5% 2,6-diphenyl-4-benzo-9-crown-3-pyridine and 5% sodium tetraphenyl borate (TBP). This sensor shows very good selectivity and sensitivity towards beryllium ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The sensor revealed a great enhancement in selectivity coefficients and sensitivity for beryllium, in comparison with the previously reported beryllium electrodes. The electrode exhibits a Nernstian behavior (with slope of 29.6 mV per decade) over a very wide concentration range (1.0×10−7 to 1.0×10−1) with a detection limit of 4.0×10−8 M (360 pg ml−1). It shows relatively fast response time, in whole concentration range (<10 s), and can be used for at least 12 weeks in the pH range of 4.5-8.0. The proposed sensor was successfully used to determination of beryllium in mineral ore.  相似文献   

16.
Comparative studies of neodymium (III)-selective PVC membrane sensors   总被引:1,自引:0,他引:1  
Sensors based on two neutral ionophores, N,N′-bis((1H-pyrrol-2-yl)methylene)cyclohexane-1,2-diamine (L1) and 3,3′-(cyclohexane-1,2-diylbis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(5-hydroxymethyl)pyridine-2-ol) (L2) are described for quantification of neodymium (III). Effect of various plasticizers; 2-nitrophenyloctylether (o-NPOE), dibutyl butylphosphonate (DBBP), tri-n-butyl phosphates (TBP), dioctylpthalate (DOP) and chloronapthalen (CN) and anion excluder, sodiumtetraphenylborate (NaTPB) has been studied. The membrane composition of PVC:o-NPOE:ionophore (L1):NaTPB (w/w; mg) of 150:300:5:5 exhibited best performance. The sensor with ionophore (L1) exhibits significantly enhanced selectivity towards neodymium (III) in the concentration range 5.0 × 10−7 to 1.0 × 10−2 M with a detection limit of 1.0 × 10−7 M and a Nernstian compliance (19.8 ± 0.3 mV decade−1 of activity) within pH range 4.0-8.0. The response time of sensor was found as 10 s. The influence of the membrane composition and possible interfering ions has also been investigated on the response properties of the electrode. The fast and stable response, good reproducibility and long-term stability of the sensor are observed. The sensor has been found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol, ethanol or acetonitrile and could be used for a period of 3 months. The selectivity coefficients determined by using fixed interference method (FIM) indicate high selectivity for neodymium. The proposed electrode shows fairly good discrimination of neodymium (III) from other cations. The application of prepared sensor has been demonstrated in the determination of neodymium (III) in spiked water samples.  相似文献   

17.
A highly selective membrane electrode based on nickel(II)-1,4,8,11,15,18,22,25-octabutoxyphthalocyanine (NOBP) is presented. The proposed electrode shows very good selectivity for thiocyanate ions over a wide variety of common inorganic and organic anions. The sensor displays a near Nernstian slope of −58.7 ± 0.6 mV per decade. The working concentration range of the electrode is 1.0 × 10−6 to −1.0 × 10−1 M with a detection limit of 5.7 × 10−7 M (33.06 ng/mL). The response time of the sensor in whole concentration ranges is very short (<10 s). The response of the sensor is independent on the pH range of 4.3-9.8. The best performance was obtained with a membrane composition of 30% PVC, 65% dibutyl phthalate, 3% NOBP and 2% hexadecyltrimethylammonium bromide. It was successfully applied to direct determination of thiocyanate in biological samples, and as an indicator electrode for titration of thiocyanate ions with AgNO3 solution.  相似文献   

18.
Pankaj Kumar 《Talanta》2010,82(4):1107-1112
An all-solid-state electrode, containing a synthesized chiral A2B2 macrocyclic compound namely (4R,5R,15R,16R)-4,5,15,16-tetraphenyl-3,6,14,17-tetraazatricyclo [13.3.1.18,12] tetracosa-1(23),8,10,12(24)19,21-hexaene-2,7,13,18-tetrone as an ionophore in polyvinyl chloride (PVC)/polyurethane (PU) membrane matrix, has been developed for the selective quantification of monohydrogen phosphate ions. The best performing membrane contained PVC, PU, ionophore, and nitrophenyl octyl ether as a plasticizer in the ratio 32.2:2.6:65.1 (w/w, %). It exhibited a near-Nernstian slope of 31.0 ± 1.0 mV/decade of activity for HPO42− ions in the concentration range of 1.0 × 10−6 to 1.0 × 10−2 M at pH 7.4. The detection limit of the electrode was 8.4 × 10−7 M and the life time was six weeks. The electrode displayed excellent selectivity for monohydrogen phosphate over other anions and the selectivity sequence was determined as HPO42− > SO42− > Ac > NO3 > ClO4 > Cl > I. The selective electrode for the monohydrogen phosphate ions was evaluated with a standard reference material (SRM 1548) and the titration of the sample solution.  相似文献   

19.
Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone (BHAB) was used as new N-N Schiffs base which plays the role of an excellent ion carrier in the construction of a Cu(II) membrane sensor. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 55% o-nitrophenyloctyl ether (NPOE), 7% BHAB and 8% oleic acid (OA). This sensor shows very good selectivity and sensitivity towards copper ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The effect of membrane composition and pH and influence of additive anionic on the response properties of electrode were investigated. The electrode exhibits a Nernstian behavior (with slope of 29.6 mV per decade) over a very wide concentration range (5.0 × 10−8 to 1.0 × 10−2 mol L−1) with a detection limit of 3.0 × 10−8 mol L−1 (2.56 ng mL−1). It shows relatively fast response time, in whole concentration range (<15 s), and can be used for at least 12 weeks in the pH range of 2.8-5.8. The proposed sensor was successfully used to determination of copper in different water samples and as indicator electrode in potentiometric titration of copper ion with EDTA.  相似文献   

20.
Palladium sensors based on two neutral ionophores, N,N′-bis(acetylacetone) cyclohexanediamine (L1) and N,N′-bis(o-hydroxyacetophenone)-1,2-cyclohexanediamine (L2) for quantification of palladium ions are described. Effect of various plasticizers (o-NPOE, DBP, DEP, DOP, TBP, and CN) and anion excluder, sodium tetra phenyl borate (NaTPB) has been studied. The best performance is obtained with a membrane composition of PVC:o-NPOE:ionophore (L1):NaTPB of 150:300:5:5 (%, w/w). The sensor exhibits significantly enhanced selectivity towards palladium ion over the concentration range 1.0 × 10−8 to 1.0 × 10−1 M with a lower detection limit of 4.0 × 10−9 M and a Nernstian compliance (29.1 ± 0.3 mV decade−1 of activity) within pH range 2.0-6.0 and fast response time of 10 s. Influence of the membrane composition and possible interfering ions has also been investigated on the response properties of the electrode. Fast and stable response, good reproducibility and long-term stability of the sensor are demonstrated. The sensor has been found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 4 months. Selectivity coefficients determined with fixed interference method (FIM) indicate high selectivity for palladium. The proposed electrode shows fairly good discrimination of palladium from other cations. The application of prepared sensor has been demonstrated in determination of palladium ions in spiked water sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号