首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a new procedure for the determination of trace levels of copper(II) in an aqueous matrix, through flow injection (FI) on-line preconcentration with a minicolumn packed with silica gel modified with 3(1-imidazolyl)propyl groups. After the preconcentration stage, the analyte was eluted with a HNO3 solution and determined by flame atomic absorption spectrometry (FAAS). The measurements of the analytical signals were carried out as peak area and peak height with the objective of evaluating the most appropriate absorption measurement for the proposed method. Four procedures to calculate the experimental enrichment factor (EF) were also studied. For a preconcentration time of 90 s the enrichment factors found in this study varied between 19.5-25.8 and 36.2-42.2 for peak area and peak height, respectively. The precision of the proposed method was calculated for a solution containing 20 μg l−1 of Cu(II), when 11.2 ml of solution was preconcentrated (n=7), and their respective relative standard deviation (R.S.D.) values were 1.2 and 1.4% for peak area and peak height, respectively. The detection limits obtained were 0.4 and 0.2 μg l−1 of Cu(II) for peak area and peak height, respectively, with a preconcentration time of 90 s. The on-line preconcentration system accuracy was evaluated through a recovery test on the aqueous samples and analysis of a certified material.  相似文献   

2.
A high-pressure microwave digestion was applied for microwave-assisted extraction (MAE) of mercury species from sediments and zoobenthos samples. A mixture containing 3 mol L−1 HCl, 50% aqueous methanol and 0.2 mol L−1 citric acid (for masking co-extracted Fe3+) was selected as the most suitable extraction agent. The efficiency of proposed extraction method was better than 95% with R.S.D. below 6%. A preconcentration method utilizing a “homemade” C18 solid phase extraction (SPE) microcolumns was developed to enhance sensitivity of the mercury species determination using on-column complex formation of mercury-2-mercaptophenol complexes. Methanol was chosen for counter-current elution of the retained mercury complexes achieving a preconcentration factor as much as 1000. The preconcentration method was applied for the speciation analysis of mercury in river water samples. The high-performance liquid chromatography-cold vapour atomic fluorescence spectrometric (HPLC/CV-AFS) method was used for the speciation analysis of mercury. The complete separation of four mercury species was achieved by an isocratic elution of aqueous methanol (65%/35%) on a Zorbax SB-C18 column (4.6 mm × 150 mm, 5 μm) using the same complexation reagent (2-mercaptophenol). The limits of detection were 4.3 μg L−1 for methylmercury (MeHg+), 1.4 μg L−1 for ethylmercury (EtHg+), 0.8 μg L−1 for inorganic mercury (Hg2+), 0.8 μg L−1 for phenylmercury (PhHg+).  相似文献   

3.
Dissolved reactive phosphorus (DRP) was determined as orthophosphate (PO4-P) in fresh and saline water samples by flow-injection (FI) amperometry, without and with in-valve column preconcentration. Detection is based on reduction of the product formed from the reaction of DRP with acidic molybdate at a glassy carbon working electrode (GCE) at 220 mV versus the Ag/AgCl reference electrode. A 0.1 M potassium chloride solution was used as both supporting electrolyte and eluent in the preconcentration system. For the FI configuration without preconcentration, a detection limit of 3.4 μg P l−1 and sample throughput of 70 samples h−1 were achieved. The relative standard deviations for 50 and 500 μg P l−1 orthophosphate standards were 5.2 and 5.9%, respectively. By incorporating an ion exchange preconcentration column, a detection limit of 0.18 μg P l−1 was obtained for a 2-min preconcentration time (R.S.D.s for 0.1 and 1 μg P l−1 standards were 22 and 1.0%, respectively). Potential interference from silicate, sulfide, organic phosphates and sodium chloride were investigated. Both the systems were applied to the analysis of certified reference materials and water samples.  相似文献   

4.
This paper reports the development of a new strategy for low-level determination of copper in water samples by using a flow-injection system coupled to solid-phase extraction (SPE) using flame atomic absorption spectrometry (F AAS) as detector. In order to preconcentrate copper from samples, a minicolumn packed with a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis-(4-vinyl-phenyl)-methyl]-pyrrolidine-1-carboxylic acid ethyl ester was used and the synthesis procedure is described. System operation is based on the on-line retention of Cu(II) ions at pH 9.0 ± 0.2 in a such minicolumn with posterior analyte elution with 2 mol l−1 HCl directly to the F AAS nebulizer. The influence of several chemical (sample pH, buffer concentration, HCl eluent concentration and effect of the ionic strength) and flow (sample and eluent flow rates and preconcentration time) variables that could affect the performance of this system were investigated as well as the possible interferents. At optimized conditions, for 2 min of preconcentration time (13.2 ml of sample volume), the system achieved a detection limit of 1.1 μg l−1, a R.S.D. 1% at 20 μg g l−1 and an analytical throughput of 25 h−1, whereas for 4 min of preconcentration time (26.4 ml of sample volume), a detection limit of 0.93 μg l−1, a R.S.D. 5.3% at 5 μg l−1 and a sampling frequency of 13 h−1 were reported.  相似文献   

5.
A sensitive and selective method was developed for the determination of traces of manganese in urine using on-line electrochemical preconcentration followed by flame atomic absorption spectrometry detection. A home made flow-through polypropylene cell (4.5 cm long × 0.8 cm diameter filled with glass marbles) with an effective inner volume of 0.5 ml containing a working and a counter electrode, both of glassy carbon and a Pt pseudo reference electrode was located in a flow injection manifold specially designed for the purpose of this work. The manganese was deposited from buffer solution of NH3/NH4Cl at pH 9.00 through an oxidizing process at a current of 400 mA during 7 min. A flow of HCl 0.1 mol l−1 at 4 ml min−1 through the cell, chemically dissolved the deposit. A small portion (15 μl) of the concentrate was introduced in a continuously flowing system by means of a timing device and was then carried to the detector for the manganese quantification. All electrochemical and spectroscopic variables as well as possible interferences in both systems were systematically studied. The relative standard deviations for ten consecutive measurements of manganese solutions of 2.0 and 20 μg l−1 were of 2.3 and 1.5%, respectively, while for a sample processed five times was less then 5%. The accuracy of the developed procedure was evaluated by adding known amounts of manganese standard to urine samples and following the whole procedure. Recoveries within the range 97.2-102.8% were obtained. To further prove the accuracy, a Seronorm Trace Elements in Urine, Batch 403125 sample with a reported concentration of 13 μg Mn l−1 was also analyzed. The experimental value obtained was of 12.7 ± 0.1 μg l−1, which does not differ significantly from the reported amount (p < 0.05). A preconcentration factor of 40, a linear range between 0.015 and 60 μg l−1 and a limit of detection of 15 ng l−1 permitted the determination of manganese in real urine samples from non-exposed subjects in the range 0.5-2.8 μg l−1.  相似文献   

6.
A flow injection on-line sorption preconcentration system has been synchronously coupled to an electrothermal atomic absorption spectrometry (ETAAS) system for the selective determination of trace amounts of Sb(III) in water, soil and plant. The determination was achieved by selective complexation and sorption of Sb(III) with [1,5-bis(2-pyridyl)-3-sulphophenyl methylene thiocarbonohydarzide (PSTH) immobilized on an anion-exchange resin (Dowex 1× 8-200)] at a wide range of pH, quantitative elution with 50 μl of 2 M HNO3 and subsequent ETAAS detection. ETAAS determination of the analyte was performed in parallel with the preconcentration of the next sample. Using a preconcentration time of 60 s and a sample loading flow rate of 2.8 ml min−1, an enhancement factor of 12 was obtained in comparison with direct injection of 50 μl aqueous solution, resulting in a sampling frequency of 31 samples h−1. The detection limit (3 s) was 2 μg l−1 and the precision was 3.1% (R.S.D.) for 11 replicate determinations at 10 μg l−1. The accuracy of the proposed method was demonstrated by analyzing one certified sample and different spiked samples.  相似文献   

7.
Sulphides in water samples were determined by stripping chronopotentiometry in a computer controlled flow system with a flow-through electrochemical cell. The working electrode was a porous glassy carbon electrode coated with Nafion and mercury. The sample was diluted with 0.1 mol L−1 NaOH and analysed. Sulphides in the sample were collected in the porous electrode as mercury sulphide and then stripped by a current of −500 μA. The limit of detection was found to be 1.6 μg L−1 and 0.5 μg L−1 for 1 mL and 5 mL of preconcentrated sample, respectively. The linear range for 1 mL sample was found to be 5-400 μg L−1. The repeatability and reproducibility was found to be 2.6% and 4.8%, respectively. The method was applied to analyses of waste water samples from a tannery.  相似文献   

8.
A robust flow injection (FI) on-line liquid-liquid extraction (LLE) preconcentration/separation system associated with a newly designed gravitational phase separator, coupled to flame atomic absorption spectrometry (FAAS) was developed. The performance of the system was illustrated for cadmium determination at the μg l−1 level. The non-charged cadmium complex with ammonium pyrrolidine dithiocarbamate (APDC) was extracted on-line into isobutyl methyl ketone (IBMK). The organic phase was effectively separated from a large volume of aqueous phase and is led into a 100 μl loop of an injection valve before its introduction into the nebulizer. The system was optimized and offered good performance characteristics with unlimited life time of phase separator, greater flow rate ratios and improved flexibility, as compared with other solvent extraction preconcentration systems. With a sampling frequency of 33 h−1, the enhancement factor was 155, the detection limit was 0.02 μg l−1, the relative standard deviation was 3.2% at 2.0 μg l−1 Cd concentration level and the calibration curve was linear over the concentration range 0.06-6.0 μg l−1. The accuracy of the proposed method was evaluated by analyzing a certified reference material of water and by recovery measurements on spiked samples. Finally, it was successfully applied to the analysis of tapwater, river and seawater samples.  相似文献   

9.
Two methods of the determination of cobalt and chromium in human urine of non-occupationally exposed populations—highly sensitive catalytic adsorptive stripping voltammetry (CAdSV) and electrothermal atomic absorption spectrometry (ET-AAS)—are evaluated and compared. The CAdSV methods are based on adsorptive accumulation of a cobalt-nioxime (1,2-cyclohexanedione dioxime) or a chromium-DTPA (diethylenetriammine-N,N,N′,N″,N″-pentaacetic acid) complexes on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of the catalytic reduction current of the adsorbed complex in the presence of sodium nitrite in case of cobalt or in the presence of sodium nitrate in case of chromium determination. In the CAdSV procedure UV-photolysis was used for the sample pre-treatment; the ET-AAS determination did not require any separate preliminary decomposition of the analyte urine samples. The accuracy of the procedures was checked by the analysis of commercially available quality control urine samples. The detection limits (3σ) were 0.13 μg l−1 for Co and 0.18 μg l−1 for Cr in ET-AAS determination and 0.007 μg l−1 for Co and 0.002 μg l−1 for Cr in CAdSV measurements. Precision (R.S.D.) was less than 5% for both methods. The study has shown that the CAdSV is a more reliable and sensitive technique for the determination of very low cobalt and chromium contents in urine, the detection of which is not possible when using the AAS technique.  相似文献   

10.
A highly sensitive adsorptive stripping voltammetric protocol for measuring trace beryllium, in which the preconcentration is achieved by adsorption of the beryllium-arsenazo-I complex at a preplated mercury-coated carbon-fiber electrode, is described. Optimal conditions were found to be a 0.05 M ammonium buffer (pH 9.7) containing 5 μM arsenazo-I, an accumulation potential of 0.0 V (versus Ag/AgCl) and a square-wave voltammetric scan. The new procedure obviates the need for renewable mercury-drop electrodes used in early stripping protocols for beryllium. A linear response is observed over the 10-60 μg l−1 concentration range (90 s accumulation), along with a detection limit of 0.25 μg l−1 beryllium (10 min accumulation). A 15-s electrochemical cleaning enables the same mercury film to be used for a prolonged operation. High stability is thus indicated from the reproducible response of a 100 μg l−1 beryllium solution (n = 60; RSD = 3.3%) over a 2.5-h operation. Applicability to a seawater sample is illustrated. The attractive behavior of the new sensor holds great promise for on-site environmental and industrial monitoring of beryllium. Preliminary data in this direction using mercury-coated screen-printed electrodes are encouraging.  相似文献   

11.
A simple and robust time-based on-line sequential injection system for trace mercury determination via cold vapour atomic absorption spectrometry (CVAAS), employing a new integrated gas-liquid separator (GLS), which in parallel operates as reactor, was developed. Sample and reductant are sequentially loaded into the GLS while an argon flow delivers the released mercury vapour through the atomic absorption cell. The proposed method is characterized by the ability of successfully managing variable sample volume up to 30 ml in order to achieve high sensitivity. For 20 ml sample volume, the sampling frequency is 25 h−1. The calibration curve is linear over the concentration range 0.05-5.0 μg l−1 of Hg(II), the detection limit is cL = 0.02 μg l−1, and the relative standard deviation is sr = 2.6% at 1.0 μg l−1 Hg(II) level. The performance of the proposed method was evaluated by analyzing certified reference material and applied to the analysis of natural waters and biological samples.  相似文献   

12.
A new chelating resin based on chitosan biopolymer modified with 5-sulphonic acid 8-hydroxyquinoline using the spray drying technique for immobilization is proposed. The chelating resin was characterized by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and surface area by nitrogen sorption. The efficiency of the chelating resin was evaluated by the preconcentration of metal ions Cu(II) and Cd(II) present in aqueous samples in trace amounts. The metal ions were previously enriched in a minicolumn and the concentrations of the analytes were determined on-line by flame atomic absorption spectrometry (FAAS). The maximum retention for Cu(II) occurred in the pH range 8-10, and for Cd(II) at pH 7. The optimum flow rate for sorption was found to be 7.2 ml min−1 for the preconcentration of the metal ions. The analytes gave relative standard deviations (R.S.D.) of 0.7 and 0.6% for solutions containing 20 μg l−1 of Cu(II) and 15 μg l−1 of Cd (II), respectively (n=7). The enrichment factors for Cu(II) and Cd (II) were 19.1 and 13.9, respectively, and the limits of detection (LOD) were 0.2 μg l−1 for Cd(II) and 0.3 μg l−1 for Cu(II), using a preconcentration time of 90 s (n=11). The accuracy of the proposed method was evaluated by the metal ion recovery technique, in the analysis of potable water and water from a lake, with recoveries being between 97.2 and 107.3%.  相似文献   

13.
Hsiang MC  Sung YH  Huang SD 《Talanta》2004,62(4):791-799
A simple method was developed for the direct and simultaneous determination of arsenic (As), manganese (Mn), cobalt (Co), and nickel (Ni) in urine by a multi-element graphite furnace atomic absorption spectrometer (Perkin-Elmer SIMAA 6000) equipped with the transversely heated graphite atomizer and longitudinal Zeeman-effect background correction. Pd was used as the chemical modifier along with either the internal furnace gas or a internal furnace gas containing hydrogen and a double stage pyrolysis process. A standard reference material (SRM) of Seronorm™ Trace Elements in urine was used to confirm the accuracy of the method. The optimum conditions for the analysis of urine samples are pyrolysis at 1350 °C (using 5% H2 v/v in Ar as the inter furnace gas during the first pyrolysis stage and pure Ar during the second pyrolysis stage) and atomization at 2100 °C. The use of Ar and matrix-free standards resulted in concentrations for all the analytes within 85% (As) to 110% (Ni) of the certified values. The recovery for As was improved when mixture of 5% H2 and 95% Ar (v/v) internal furnace gas was applied during the first step of a two-stage pyrolysis at 1350 °C, and the found values of the analytes were within 91-110% of the certified value. The recoveries for real urine samples were in the range 88-95% for these four elements. The detection limits were 0.78 μg l−1 for As, 0.054 μg l−1 for Mn, 0.22 μg l−1 for Co, and 0.35 μg l−1 for Ni. The upper limits of the linear calibration curve are 60 μg l−1 (As); 12 μg l−1 (Mn); 12 μg l−1 (Co) and 25 μg l−1 (Ni), respectively. The relative standard deviations (R.S.D.s) for the analysis of SRM were 2% or less. The R.S.D.s of a real urine sample are 1.6% (As), 6.3% (Mn), 7.0% (Ni) and 8.0% (Co), respectively.  相似文献   

14.
Sawula GM 《Talanta》2004,64(1):80-86
Microcolumns containing 8-hydroxyquinoline azo-immobilized on controlled pore glass were incorporated in a field sampler for on-site collection, isolation and preconcentration of trace metal ions in waters of the Okavango Delta, Botswana. Sequestered trace metal ions were recovered by elution with 0.5 ml of 1.5 M nitric acid, and determined by graphite furnace atomic absorption spectrometry (GFAAS). This sampling and enrichment method minimizes sample contamination, and collection of large volumes of water samples for transporting, over long distances, to analytical laboratories is avoided.Data reported comprise one of the initial surveys on trace metal ion concentrations in waters of the Okavango Delta, Botswana. In waters with more efficient mixing, dissolved metal ion concentrations found were generally low with slightly elevated levels of manganese (7-19 μg l−1), zinc (2.7-4.8 μg l−1), nickel (0.2-2.5 μg l−1) and copper (0.3-2.1 μg l−1). For each trace metal ion, concentration levels seem to reflect zones of varying water conveyance, and show no obvious temporal and spatial variations apart from a slight increment from the inlet in the upper Delta to the outlets in the lower Delta.  相似文献   

15.
Li Y  Jiang Y  Yan XP 《Talanta》2004,64(3):758-765
A further study on a newly developed flow injection (FI) on-line multiplexed sorption preconcentration (MSP) using a knotted reactor coupled with flame atomic absorption spectrometry (FAAS) was carried out to demonstrate its applicability and limitation for trace element determination. For this purpose, Cr(VI), Cu(II), Ni(II) and Co(II) were selected as the analytes, and detailed comparison was made between the MSP-FAAS and conventional FI on-line sorption preconcentration FAAS in respect to retention efficiency and linear ranges of absorbance versus sample loading flow rate and total preconcentration time. Introduction of an air-flow for removal of the residual solution in the KR after each sub-injection in the MSP procedure played a decisive role in the improvement of retention efficiency. The linearity of absorbance versus sample loading flow rate or total preconcentration time was extended to a more degree for the metal ions with less stability of their PDC (pyrrolidine dithiocarbamate) complexes than those with more stable PDC complexes. It seems that the MSP procedure behaves advantages beyond the inflection points in the diagrams of absorbance versus total preconcentration time and sample loading flow rate obtained by conventional (a single continuous) preconcentration procedure. With a sample loading flow rate of 6.0 ml min−1 and a total preconcentration time of 180 s, the retention efficiencies were increased from 25, 46, 41 and 63% with a single continuous sorption preconcentration to 44, 78, 65 and 75% with a six sub-injection preconcentration procedure for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The detection limits were 0.40, 0.33, 0.31 and 0.26 μg l−1 for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The precision (R.S.D.) for eleven replicate determination of 2 μg l−1 Cr(VI), Co(II) and Ni(II), and 1 μg l−1 Cu(II), was 2.1, 4.1, 2.6 and 1.7%, respectively.  相似文献   

16.
Erdem A  Eroğlu AE 《Talanta》2005,68(1):86-92
A selective matrix removal/separation/enrichment method, utilizing a microcolumn of a chelating resin with SH functional groups (Duolite GT-73), was proposed for the determination of Sb(III) in waters by segmented flow injection-hydride generation atomic absorption spectrometry (SFI-HGAAS). The resin was selective to Sb(III) at almost all pH and acidity values employed, whereas Sb(V) was not retained at all and could be determined after a pre-reduction step with l-cysteine. Spike recoveries were tested at various concentration levels in different water types and were found to vary between 85 and 118%. Accuracy of the proposed methodology was checked by analyzing a standard reference material and a good correlation was found between the determined (13.3 ± 1.1 μg l−1) and the certified value (13.79 ± 0.42 μg l−1). The method was applied to several bottled drinking water samples for antimony determination with and without preconcentration and none of the samples were found to contain antimony above the permissible level (5 μg l−1). The characteristic concentration (the concentration of the analyte corresponding to an absorbance of 0.0044) was 0.55 μg l−1 and the 3 s limit of detection (LOD) based on five times preconcentration was 0.06 μg l−1. The applicability of the microcolumn separation/preconcentration/matrix removal method for flow injection systems was also demonstrated.  相似文献   

17.
This work assesses for the first time the potential of natural Kaolinite as adsorptive material for preconcentration of metal traces. Manganese is quantitatively retained by 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) on thermal modified Kaolinite by column method in pH range of 8.5-10.0 at flow rate of 2 ml min−1. Manganese was removed from column with 5.0 ml of H2SO4 4 mol l−1 and determined by flame atomic absorption spectrometric at 279.5 nm. In this case, 0.l μg of manganese can be concentrated from 800 ml of aqueous sample (where concentration is as low as 0.125 μg l−1). Detection limit is 4.3 μg l−1 (3 δbl m−1) and analytical curve is linear in the 0.02-10 mg l−1 in final solution with correlation coefficient 0.9997 and relative standard deviation for eight replicate determination of 5 μg of manganese in final solution is 0.71%. The interference of a large number of anions and cations has been studied in detail to optimize the conditions and method was successfully applied for determination of manganese in complex materials.  相似文献   

18.
A new flow injection (FI) system for the determination of Pb(II) at trace level with a preconcentration step and spectrophotometric detection is proposed. It is based on preconcentration of lead ions on chitosan and dithizone-lead complex formation in aqueous medium (pH 9). The chemicals and FIA variables influencing the performance of the system were optimized and applied to the determination of lead in natural, well, and drinking water samples. It is a simple, highly sensitive, and low cost alternative methodology. The method provided a linear rage between 25 and 250 μg l−1, a detection limit of 5.0 ng ml−1 and a sample throughput of 15 h−1. The obtained results of spiked samples are in good agreement between the proposed method and ICP-AES.  相似文献   

19.
The use of a permeation liquid membrane system for the preconcentration and separation of nickel in natural and sea waters and subsequent determination by atomic absorption spectroscopy is presented. 2-Hydroxybenzaldehyde N-ethylthiosemi-carbazone (2-HBET) in toluene is used as the active component of the liquid membrane. A study strategy based on a simplex design has been followed. Several chemical and physical parameters were optimized. Maximum permeation coefficient was obtained at a feed solution pH of 9.4, 0.3 mol l−1 of HNO3 in the stripping solution and 1.66 mmol l−1 of 2-HBTE in toluene as carrier. The precision of the method was 4.7% at 95% significance level and a detection limit of 0.012 μg l−1 of nickel was achieved. The preconcentration procedure showed a linear response within the studied concentration range from 3 to 500 μg l−1 of Ni in the feed solution. The method was validated with different spiked synthetic seawater and certified reference water samples: TMDA-62 and LGC 6016, without matrix interferences and showing good concordance with the certified values, being the relative errors −5.9% and −2.2%, respectively. Under optimal conditions, the average preconcentration yield for real seawater samples was 98 ± 5%, with a nickel preconcentration factor of 20.83 and metal concentrations ranging between 2.8 and 5.4 μg l−1.  相似文献   

20.
A procedure for the extraction and determination of methyl mercury and mercury (II) in fish muscle tissues and sediment samples is presented. The procedure involves extraction with 5% (v/v) 2-mercaptoethanol, separation and determination of mercury species by HPLC-ICPMS using a Perkin-Elmer 3 μm C8 (33 mm × 3 mm) column and a mobile phase 3 containing 0.5% (v/v) 2-mercaptoethanol and 5% (v/v) CH3OH (pH 5.5) at a flow rate 1.5 ml min−1 and a temperature of 25 °C. Calibration curves for methyl mercury (I) and mercury (II) standards were linear in the range of 0-100 μg l−1 (r2 = 0.9990 and r2 = 0.9995 respectively). The lowest measurable mercury was 0.4 μg l−1 which corresponds to 0.01 μg g−1 in fish tissues and sediments. Methyl mercury concentrations measured in biological certified reference materials, NRCC DORM - 2 Dogfish muscle (4.4 ± 0.8 μg g−1), NRCC Dolt - 3 Dogfish liver (1.55 ± 0.09 μg g−1), NIST RM 50 Albacore Tuna (0.89 ± 0.08 μg g−1) and IRMM IMEP-20 Tuna fish (3.6 ± 0.6 μg g−1) were in agreement with the certified value (4.47 ± 0.32 μg g−1, 1.59 ± 0.12 μg g−1, 0.87 ± 0.03 μg g−1, 4.24 ± 0.27 μg g−1 respectively). For the sediment reference material ERM CC 580, a methyl mercury concentration of 0.070 ± 0.002 μg g−1 was measured which corresponds to an extraction efficiency of 92 ± 3% of certified values (0.076 ± 0.04 μg g−1) but within the range of published values (0.040-0.084 μg g−1; mean ± s.d.: 0.073 ± 0.05 μg g−1, n = 40) for this material. The extraction procedure for the fish tissues was also compared against an enzymatic extraction using Protease type XIV that has been previously published and similar results were obtained. The use of HPLC-HGAAS with a Phenomenox 5 μm Luna C18 (250 mm × 4.6 mm) column and a mobile phase containing 0.06 mol l−1 ammonium acetate (Merck Pty Limited, Australia) in 5% (v/v) methanol and 0.1% (w/v) l-cysteine at 25 °C was evaluated as a complementary alternative to HPLC-ICPMS for the measurement of mercury species in fish tissues. The lowest measurable mercury concentration was 2 μg l−1 and this corresponds to 0.1 μg g−1 in fish tissues. Analysis of enzymatic extracts analysed by HPLC-HGAAS and HPLC-ICPMS gave equivalent results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号