首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electrochemical sensor for cinchonine (CCN) using the β-cyclodextrin (β-CD) modified poly(N-acetylaniline) (PAA) electrode has been developed, in which 1,4-hydroquinone (HQ) was chosen as a probe. Complexation of HQ with β-CD modified on the glassy carbon electrode (GCE) was examined by cyclic voltammetry (CV). HQ was included in the cavity of β-CD and reversible voltammograms were observed. In the presence of CCN, a competitive inclusion equilibrium with β-CD was established between HQ and CCN, lowering the peak current of HQ. The decrease in the peak current of HQ is directly proportional to the amount of CCN. Linear calibration plot was obtained over the range from 4.0 × 10−6 to 8.0 × 10−5 M with a detection limit (S/N = 3) of 2.0 × 10−6 M. From the inhibitory effect of CCN on the inclusion of HQ by β-CD, the apparent formation constant of CCN with the immobilized β-CD was estimated. This electrochemical sensor showed excellent sensitivity, repeatability, stability and recovery for the determination of CCN. The response mechanism of the sensor was discussed in detail. The optimum steric configuration of inclusion complex was presented by molecular dynamics simulation.  相似文献   

2.
Covalent directly head-to-tail linked homogeneous and heterogeneous cyclodextrin (CD) dimers were synthesized, and that the reaction of 6-tosylated α-, β-, or γ-CD with a β-CD mono-oxyanion linked the second CD to the secondary hydroxyl side of β-CD was demonstrated. Moreover, deprotonation of α- and γ-CD using NaOH gave corresponding mono-oxyanions, which reacted with the 6-tosylated CDs to produce the CD dimers. The binding of the dimers to sodium 6-(4-tert-butylaniline)-2-naphthalenesulfonate (BNS) was investigated. The binding constant of the 6β–2β-CD dimer with BNS was estimated as 3.2 × 106 M−1, about 102 times larger than that of β-CD monomer.  相似文献   

3.
The supramolecular interaction between N,N-diethyl-2-(1-naphthalenyloxy)propanamide (napropamide) and β-cyclodextrin (β-CD) has been studied by spectrofluorimetry. The results showed that β-CD reacted with napropamide to form an inclusion complex with an association constant of 3.18×103 l mol−1. The composition of the complex was 1:1 (β-CD:napropamide). Based on the significant enhancement of fluorescence intensity of napropamide in inclusion complex, a spetrofluorimetric method with high sensitivity and selectivity was developed for the determination of napropamide in aqueous solution. Under the optimum conditions, the complex had excitation and emission maxima at 285 and 339 nm, respectively. The linear range of the method was 3.7-1500 ng ml−1 with a detection limit of 1.1 ng ml−1. The proposed method was successfully used to determine napropamide in river water.  相似文献   

4.
A new reagent, 1,3-bis(2-benzothiazolyl-diazoamino)benzene (BBTAB), was first synthesized and characterized by elemental analysis, 1H NMR and IR spectra. The inclusion complex of BBTAB with β-cyclodextrin (β-CD) was formed. BBTAB in the inclusion complex or alone reacts with copper(II) to form chelate complex in a slight basic medium, which results in drastic or slight fluorescence enhancement, respectively. The spectrofluorimetric method of trace amount of copper(II) based on the enhancement of inclusion complex by binding with copper(II) was established. The excitation and emission wavelengths of the BBTAB/β-CD/Cu system are 389 and 480 nm, respectively. Under optimal conditions, a linear response of BBTAB/β-CD to copper(II) is obtained in the range of 3.0 × 10−7 to 1.0 × 10−5 mol L−1, and the detection limit is determined to be 1.2 × 10−8 mol L−1. The method is selective, sensitive and simple, and has been used for the determination of trace copper(II) in water samples with satisfactory results. The possible response mechanism of BBTAB/β-CD or BBTAB to copper(II) and the role of β-CD in the drastic enhancement of fluorescence of BBTAB/β-CD/Cu system have been discussed.  相似文献   

5.
Tang B  Wang X  Wang G  Yu C  Chen Z 《Talanta》2006,69(1):113-120
An indirect spectrofluorimetric method with high sensitivity and selectivity was developed for the determination of antifungal drug: tolnaftate (TNF), depending on the supramolecualr multirecognition interaction among the anionic surfactant sodium laurylsulfate (SLS), β-cyclodextrin (β-CD) and β-naphthol (ROH). The mechanism of the inclusion was studied and discussed by means of fluorescence spectrum, infra-red spectrograms and 1HNMR spectroscopy. Results showed that the naphthalene ring of ROH and the hydrophobic hydrocarbon chain of SLS were included into the β-CD's cavity to form a ROH:SLS:β-CD ternary inclusion complex with stoichiometry of 1:1:1 at room temperature, which provided effective protection for the excited state of ROH. At λex/λem = 273/360 nm, the fluorescence intensity was linear over a tolnaftate concentration range of 2.46 × 10−9 to 2.10 × 10−6 mol L−1. The detection limit and relative standard deviation was 7.50 × 10−10 mol L−1 and 1.4%, respectively. The interference of 31 foreign substances was slight. The proposed method had been successfully applied to the determination of tolnaftate in artificial mixed samples with almost quantitative recovery.  相似文献   

6.
The interactions of brilliant cresyl violet (BCV) with herring sperm DNA in γ-cyclodextrin (γ-CD) supramolecular system were studied by UV-vis absorption spectroscopy and cyclic voltammetry (CV). Both UV-vis absorption and CV data show that the interaction of BCV with DNA depends on the concentration ratio of BCV to DNA (R), the initial concentration of BCV and γ-CD. The binding constants of BCV monomer, (BCV)2 dimer and (BCV)2-γ-CD inclusion complex with DNA are 1.64 × 105, 2.56 × 104 and 2.32 × 103 M−1, respectively. It was observed that γ-CD can affect the interactive mode of BCV with DNA. If R is larger than 0.5, the (BCV)2-γ-CD inclusion complex will retain intact and bind to DNA via the electrostatic attraction forces. By contrast, when R is smaller than 0.5, the inclusion complex will be partially dissociated and the free BCV monomer is intercalated into the double-helix structure of DNA attributing to the more favorable microenvironment of DNA for the BCV monomer. Our work postulates the importance of the initial concentration of dye and host molecule on the interaction of dye with DNA in living bodies.  相似文献   

7.
Fluorescence spectroscopy was used to characterize inclusion compounds between 4-amino-1,8-naphthalimides (ANI) derivatives and different cyclodextrins (CDs). The ANI derivatives employed were N-(12-aminododecyl)-4-amino-1,8-naphthalimide (mono-C12ANI) and N,N′-(1,12-dodecanediyl)bis-4-amino-1,8-naphthalimide (bis-C12ANI). The CDs used here were α-CD, β-CD, γ-CD, HP-α-CD, HP-β-CD and HP-γ-CD. The presence of CDs resulted in pronounced blue-shifts in the emission spectra of the ANI derivatives, with increases in emission intensity. This behavior was parallel to that observed for the dyes in apolar solvents, indicating that inclusion complexes were formed between the ANI and the CDs. Mono-C12ANI formed inclusion complexes of 1:1 stoichiometry with all the CDs studied. Complexes with the larger CDs (HP-β-CD, HP-γ-CD and γ-CD) were formed by inclusion of the chromophoric ANI ring system, whereas the smaller CDs (α-CD, HP-α-CD and β-CD) formed complexes with mono-C12ANI by inclusion of the dodecyl chain. Bis-C12ANI formed inclusion complexes of 1:2 stoichiometry with HP-β-CD, HP-γ-CD and γ-CD, but did not form inclusion complexes with α-CD, HP-α-CD and β-CD. The data were treated in the case of the large CDs using a Benesi-Hildebrand like equation, giving the following equilibrium constants: mono-C12ANI:HP-β-CD (K 11 = 50 M?1), mono-C12ANI:HP-γ-CD (K 11 = 180 M?1), bis-C12ANI:HP-β-CD (K 12 = 146 M?2), bis-C12ANI:HP-γ-CD (K 12 = 280 M?2).  相似文献   

8.
Hu YF  Zhang ZH  Zhang HB  Luo LJ  Yao SZ 《Talanta》2011,84(2):305-313
A sensitive and selective electrochemical sensor based on a polyaniline modified carbon electrode for the determination of l-phenylalanine has been proposed by utilizing β-cyclodextrin (β-CD) incorporated multi-walled carbon nanotube (MWNT) and imprinted sol-gel film. The electrochemical behavior of the sensor towards l-phenylalanine was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometric i-t curve. The surface morphologies of layer-by-layer assembly electrodes were displayed by scanning electron microscope (SEM). The response mechanism of the imprinted sensor for l-phenylalanine was based on the inclusion interaction of β-CD and molecular recognition capacity of the imprinted film for l-phenylalanine. A linear calibration plot was obtained covering the concentration range from 5.0 × 10−7 to 1.0 × 10−4 mol L−1 with a detection limit of 1.0 × 10−9 mol L−1. With excellent sensitivity, selectivity, stability, reproducibility and recovery, the electrochemical imprinted sensor was used to detect l-phenylalanine in blood plasma samples successfully.  相似文献   

9.
The influence of nine small organic molecules on the phosphorescence properties of β-cyclodextrin (β-CD)/1-naphthol/1,2-dibromoethane (DBE) and β-CD/2-naphthol/DBE ternary inclusion complexes are examined by means of room temperature phosphorescence (RTP) measurements. It was demonstrated that the rigidity of β-CD/naphthol inclusion complex, RTP intensity and lifetime could be enhanced when different small organic molecules (less than 1% v/v) were added respectively; the analytical characters of two kinds of naphthols in host-guest stabilized-RTP were improved. The linear range of 1-naphthol become broad in the presence of n-propanol, methanol, ethanol or 2-propanol and its detection limit was reduced from 4×10−6 to 7.5×10−8 mol l−1 in the presence of 0.6% (v/v) methanol. Likewise, for 2-naphthol, the detection limit was reduced from 2.0×10−6 to 2.8×10−7 mol l−1 and to 8.1×10−7 mol l−1 after 0.5% (v/v) glycol and 0.2% (v/v) 2-propanol being added, respectively.  相似文献   

10.
Seven different ferrocene derivatives have been tested in vitro against Ehrlich ascites tumor cells. Neither ferrocene nor the monosubstituted derivative N,N-dimethylaminomethylferrocene showed cytotoxic activity (IC50 > 1000 μM for 3 h treatments). Better results were obtained with 1,2-disubstituted derivatives. The IC50 values ranged from 376.6 μM for 1,2-diformylferrocene to 71.2 μM for racemic 2-(N,N-dimethylaminomethyl)ferrocenecarboxamide. The latter derivative was also encapsulated in native β-cyclodextrin (CD), heptakis-2,3,6-tri-O-methyl-β-CD (TRIMEB) and 2-hydroxypropyl-β-CD (HPβCD) to give 1:1 (host:guest) inclusion compounds. The existence of true inclusion complexes in the solid state was confirmed by a combination of powder X-ray diffraction, thermogravimetric analysis, FTIR and 13C CP MAS NMR spectroscopy. The IC50 value for the β-CD inclusion compound was identical to that obtained for the nonincluded ferrocene derivative. By contrast, the inclusion compounds comprising TRIMEB and HPβCD yielded IC50 values of 25.2 and 20.0 μM, respectively. No obvious relationship could be established between the redox behavior of the compounds determined by cyclic voltammetry and the biochemical data.  相似文献   

11.
The efficient synthesis of natural benzaldehyde from natural cinnamon oil catalyzed by 2-hydroxypropyl-β-cyclodextrin (2-HPβ-CD) in water under rather mild conditions has been developed. Various analysis methods, e.g., DSC, UV-vis, 1H NMR, ROESY, and fluorescence measurements had been utilized to demonstrate formation of the 1:1 (molar ratio) complexes between 2-HPβ-CD and cinnamaldehyde. The inclusion equilibrium constant Ka was 928 M−1 at 298 K. The inclusion complex activated the substrate and promoted the reaction selectivity. The yield for benzaldehyde could reach 70% under the optimized conditions (323 K, 5 h, 2% NaOH (w/v), cinnamaldehyde: 2-HPβ-CD=1:1 (molar ratio)). Further investigation on kinetics and solubilization revealed that the binding ability between 2-HPβ-CD and cinnamaldehyde is primarily responsible for the catalytic effects.  相似文献   

12.
The inclusion complexes of isoquercitrin (IQ) with cyclodextrins (CDs) including β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) and dimethyl-β-cyclodextrin (DM-β-CD) have been investigated using the methods of steady-state fluorescence, UV-vis absorption and induced circular dichroism. The stoichiometric ratio of the three complexes was found to be 1:1 and the stability constants (K) were estimated from spectrofluorometric titrations, as well as the thermodynamic parameters. Maximum inclusion ability was measured in the case of DM-β-CD due to the increased hydrophobicity of the host cavity, followed by HP-β-CD and β-CD. The effect of pH on the complexation process was also quantitatively assessed. IQ exists in different molecular forms depending on pH and β-CDs were most suitable for inclusion of the neutral form of IQ. The phase-solubility diagrams obtained with β-CD, HP-β-CD and DM-β-CD were all classical AL type. And DM-β-CD provided the best solubility enhancement, 12.3-fold increase compared to 2.8- and 7.5-fold increase for β-CD and HP-β-CD. The apparent stability constants obtained from the solubility data at 25 °C were comparable with those obtained from the fluorescence assays. Moreover, 1H NMR was carried out, which revealed that the IQ favorably inserted into the inner cavity from the chromone part instead of the phenyl part, which was in agreement with molecular modeling studies.  相似文献   

13.
β−cyclodextrins (β−CD)-based inclusion complexes of CoFe2O4 magnetic nanoparticles (MNPs) were prepared and used as catalysts for chemiluminescence (CL) system using the luminol-hydrogen peroxide CL reaction as a model. The as-prepared inclusion complexes were characterized by XRD (X-ray diffraction), TGA (thermal gravimetric analysis) and FT-IR. The oxidation reaction between luminol and hydrogen peroxide in basic media initiated CL. The effect of β−CD-based inclusion complexes of CoFe2O4 magnetic nanoparticles and naked CoFe2O4 magnetic nanoparticles on the luminol-hydrogen peroxide CL system was investigated. It was found that inclusion complexes between β−CD and CoFe2O4 magnetic nanoparticles could greatly enhance the CL of the luminol-hydrogen peroxide system. Investigation on the kinetic curves and the chemiluminescence spectra of the luminol-hydrogen peroxide system demonstrates that addition of CoFe2O4 MNPs or inclusion complexes between β−CD and CoFe2O4 MNPs does not produce a new luminophor of the chemiluminescent reaction. The luminophor for the CL system was still the excited-state 3-aminophthalate anions (3-APA*). The enhanced CL signals were thus ascribed to the possible catalysis from CoFe2O4 MNPs or inclusion complexes between β−CD and CoFe2O4 nanoparticles. The feasibility of employing the proposed system for hydrogen peroxide sensing was also investigated. Experimental results showed that the CL emission intensity was linear with hydrogen peroxide concentration in the range of 1.0 × 10−7 to 4.0 × 10−6 mol L−1 with a detection limit of 2.0 × 10−8 mol L−1 under optimized conditions. The proposed method has been used to determine hydrogen peroxide in water samples successfully.  相似文献   

14.
The complexation of native β-cyclodextrin (CD) and seven aromatic compounds, namely, phenetole, toluene, m-xylene, naphthalene, biphenyl, fluorene and phenanthrene, has been studied for first time utilizing a solid-phase microextraction (SPME)–high-performance liquid chromatography (HPLC) method. The stoichiometries of the analyte:β-CD complexes were found to be either 1:1 or 1:2. The formation of 1:2 complexes was confirmed for naphthalene, biphenyl, fluorene, and phenanthrene only when utilizing relatively high concentrations of β-CD (up to 6.6 mM). The 1:2 stoichiometries were confirmed using the classical modified Benesi–Hildebrand (BH) method. The calculated binding constants for 1:1 stoichiometries (K1) using the SPME method varied from 115.3 M−1 for toluene to 3510 M−1 for phenanthrene, whereas the corresponding values to the 1:2 stoichiometries (K3) varied from 7.30 × 105 M−2 for biphenyl to 9.03 × 106 M−2 for naphthalene.  相似文献   

15.
A bifurcated optical fiber chemical sensor for continuous monitoring of bisphenol A (BPA) has been proposed based on the fluorescence quenching (λex/λem = 286/390 nm) of pyrene/dimethyl β-cyclodextrin (HDM-β-CD) supramolecular complex immobilized in a plasticized poly(vinyl chloride) (PVC) membrane, in which pyrene served as a sensitive fluorescence indicator probe. The decrease of the fluorescence intensity of pyrene/HDM-β-CD complex upon the addition of BPA was attributed to the displacement of pyrene by BPA, which has been utilized as the basis of the fabrication of a BPA-sensitive fluorescence sensor. The response mechanism of the sensor was discussed in detail. The sensor exhibited a dynamic detection range from 7.90 × 10−8 to 1.66 × 10−5 mol L−1 with a detection limit of 7.00 × 10−8 mol L−1, and showed excellent reproducibility, reversibility, selectivity, and lifetime. The proposed sensor was successfully used for the determination of BPA in water samples and landfill leachate.  相似文献   

16.
张红芬  潘景浩  高筱玲  郭玉晶 《分析化学》2006,34(11):1541-1545
采用极谱法、紫外可见光谱法及荧光光谱法研究了水溶性卟啉T(4-Mop)PS4与α-CD、-βCD、γ-CD、Hp-β-CD及SBE--βCD 5种环糊精的相互作用,结果表明T(4-Mop)PS4分别与这5种环糊精形成了T(4-Mop)PS4-CD s超分子体系。此外,本研究还采用极谱法、紫外可见光谱法及荧光光谱法测定了T(4-Mop)PS4-CD s超分子体系的包结常数和包结比,比较了T(4-Mop)PS4与5种环糊精的包结能力,并由此推测了包结机理,为T(4-Mop)PS4卟啉、环糊精的进一步应用提供了理论信息。  相似文献   

17.
Dapsone (DDS) forms a 1:1 supramolecular complex with β-cyclodextrin (β-CD) both in the absence and presence of linear alcohols. The apparent association constants (Kapp) were measured using a steady-state fluorescence method. Kapp decreases linearly with an increasing number of carbon atoms in the chain of the alcohol. We attribute this to a competition between dapsone and linear alcohol for the β-CD hydrophobic cavity as detailed analysis of Kapp as a function of the concentration of alcohol suggests that the interactions in the β-CD-dapsone-linear alcohol system do not result in the formation of ternary supramolecular complex. Quenching the fluorescence of dapsone with NaI shows that the β-CD cavity acts as a shield against contact between dapsone and this aqueous phase quencher, while addition of alcohols inhibits this protective effect. This again suggests that alcohols occupy the space within the β-CD cavity with the result that dapsone molecules are forced to reside in the aqueous environment. Based on the significant enhancement of the fluorescence intensity of dapsone produced through complex formation, a spectrofluorimetric method for the determination of dapsone in bulk aqueous solution in the presence of β-CD is developed. The linear relationship between the fluorescence intensity and dapsone concentration was obtained in the range of 3.39 to 1.50×103 ng ml−1, with a correlation coefficient (r) of 0.9998. The detection limit was 1.02 ng ml−1. There was no interference from the excipients normally used in tablet formulations. The application of the present method to the determination of dapsone in tablets and human plasma gave satisfactory results and was compared with the pharmacopoeia method.  相似文献   

18.
The aim of the study was to synthesize and characterization the inclusion complexes of amlodipine besylate (AML) drug with β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) which has antioxidating activity property. The guest/host interaction of AML with β-CD and γ-CD in order to complexation drug in β-CD and γ-CD were investigated. The interaction inclusion complexes was characterized by fourier transform infrared and ultraviolet–visible spectroscopies. The formation constant was calculated by using a modified Benesi–Hildebrand equation at 25 °C. The stoichiometry of inclusion complexes was found to be 1:1 for β-CD and γ-CD with AML drug. The antioxidant activity of AML drug and its inclusion complexes were determined by the scavenging of stable radical 2,2′-diphenyl-1-picrylhydrazyl (DPPH·). Kinetic studies of DPPH· with AML and CDs complexes were done. The experimental results confirmed the forming of AML complexes with CDs also these indicated that the AML/β-CD and AML/γ-CD inclusion complexes was the most reactive than its free form into antioxidant activity.  相似文献   

19.
An optical sensor for berberine, the basic ingredient of the widely used traditional Chinese medicine Coptis Chinensis, based on its intrinsic fluorescence enhanced by butylated-β-cyclodextrin (HDB-β-CD) immobilized in plasticized poly(vinyl chloride) (PVC) membrane has been developed. The drastic enhancement of fluorescence intensity of berberine was attributed to the formation of an inclusion complex between HDB-β-CD and berberine, which has been utilized as the basis of the fabrication of a berberine-sensitive fluorescence sensor. The proposed sensor was quite distinct from those fluorescent sensors for berberine reported so far which relied upon quenching the fluorescence of the sensing reagent immobilized on membrane by berberine. The response mechanism of optode membrane was discussed in detail from the view of molecular dynamics and the optimum steric configuration of the inclusion complex was presented by molecular dynamics simulation. The analytical performance characteristics of the proposed berberine-sensitive sensor were investigated. The sensor can be applied to the quantification of berberine with a linear range covering from 4.0×10−7 to 2.0×10−5 mol l−1 with a detection limit of 8.0×10−8 mol l−1. The sensor exhibits excellent reproducibility, reversibility and selectivity. The recommended method was successfully used for the determination of berberine in pharmaceutical preparations.  相似文献   

20.
Huang Y  Jiang X  Wang W  Duan J  Chen G 《Talanta》2006,70(5):1157-1163
A method of capillary electrophoresis with wall-jet amperometric detection (AD) has been developed for separation and determination of l-tyrosine (Tyr) and its metabolites, such as Tyramine (TA), p-hydroxyphenylpyruvic (pHPP), homogentisic acid (HGA) and some dipeptides containing Tyr, such as Tyr-Gly-Gly (YGG), Tyr-Arg (YR) and Tyr-d-Arg (Y-d-R). A carbon disk electrode was used as the working electrode and the optimal detection potential was 1.00 V (versus Ag/AgCl). At 18 kV of applied voltage, the seven compounds were completely separated within 20 min in 110 × 10−3 mol/L Na2HPO4-NaH2PO4 buffer (pH 7.10) containing 3 × 10−3 mol/L β-cyclodextrin (β-CD). Good linear relationship was obtained for all analytes and the detection limits of seven analytes were in the range of 0.95-4.25 ng/mL. The proposed method has been applied to examine the metabolic process of l-tyrosine in rabbit's urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号