首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A method was developed for the analysis of volatile polar compounds in a water matrix using open cap vials Solid Phase Micro-Extraction (SPME) and Capillary Gas Chromatography (CGC). Both SPME techniques – direct sampling and headspace – were tested. Optimization of experimental conditions – exposure time, desorption time, with headspace SPME in addition the influence of the temperature and ionic strength of the sample solution on compound sorption, and finally GC response – were investigated. The analytes were extracted by directly immersing the 85 μm polyacrylate fiber in the aqueous sample or in the headspace. The linear range of the preconcentration process and the precision were examined. The amount of polar analytes sorbed on the fiber was determined and was found to be concentration dependent; it amounted to 0.014–0.64% in the concentration range of 0.00425–425 ppm studied in aqueous solution for direct sampling SPME and to 0.011–2.76% for solutions of concentration 0.0425–255 ppm for headspace SPME. The limits of determination were ascertained. Headspace SPME was applied to the analysis of real-life samples.  相似文献   

2.
Landfill leachates contain significant amounts of organic carbon, nitrogen and heavy metals as well as other specific trace organic compounds like organochlorine pesticides. In this study a simple and reliable methodology was improved to detect organochlorine pesticides in leachate samples by using a previous solid-phase microextraction procedure [with a 100 microm poly(dimethylsiloxane) fiber] and chromatographic analysis by GC-electron-capture detection. The extraction time, temperature, ionic strength of the solution and sampling of the headspace were the parameters studied. Reproducibility achieved values below 20% RSD, and standard addition was used for pesticides confirmation.  相似文献   

3.
This review discusses and compares the methods given for the determination of rare earth elements (REE) in natural water samples, including sea, river, lake, tap, ground and waste waters as well as Antarctic ice. Since REE are at very low concentrations in natural waters, numerous different preconcentration methods have been proposed to enable their measurement. These include liquid liquid extraction, dispersive liquid-liquid micro-extraction and solidified floating drop micro-extraction. In addition to liquid-liquid extraction methods, solid phase extraction using commercial resins, resins made in-house, silica-based exchange materials and other solid media is also discussed. These and other techniques such as precipitation/co-precipitation and flotation are compared in terms of speed, preconcentration factors achieved, precision, accuracy and limits of detection (LOD). Some papers have discussed the direct determination of REE in these sample types. Some have used specialised sample introduction systems such as ultrasonic nebulization whereas others have used a standard sample introduction system coupled with inductively coupled plasma mass spectrometry (ICP-MS) detection. These direct methods have also been discussed and compared.  相似文献   

4.
Kaykhaii M  Nazari S  Chamsaz M 《Talanta》2005,65(1):223-228
The possibility of applying headspace microextraction into a single drop for the determination of amines in aqueous solutions is demonstrated. A 1 μl drop of benzyl alcohol containing 2-butanone as an internal standard was suspended from the tip of a micro syringe needle over the headspace of stirred sample solutions for extraction. The drop was then injected directly into a GC. The total chromatographic determination was less than 10 min. Optimization of experimental conditions (sampling time, sampling temperature, stirring rate, ionic strength of the solution, concentration of reagents, time of extraction and organic drop volume) with respect to the extraction efficiency were investigated and the linear range and the precision were also examined. Calibration curves yielded good linearity and concentrations down to 2.5 ng ml−1 were detectable with R.S.D. values ranging from 6.0 to 12.0%. Finally, the method was successfully applied to the extraction and determination of amines in tap and river water samples. This system represents an inexpensive, fast, simple and precise sample cleanup and preconcentration method for the determination of volatile organic compounds at trace levels.  相似文献   

5.
The present work was focused on the development of a simple method aimed at the determination of 12 polycyclic aromatic hydrocarbons (PAHs) and 15 polychlorinated biphenyls (PCBs) in landfill leachates and sediments by adapting a domestic microwave oven to perform microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) followed by gas chromatographic separation and tandem mass spectrometric detection. Good linearity was observed within the concentration range studied; detection limits ranged from 0.1 ng/l to 7 ng/l for PCBs and from 5 ng/l to 926 ng/l for PAHs. Concerning precision, the relative standard deviations obtained were, on average for the leachate and sediment samples analysed, 18% for PCBs and 20% for PAHs. Average recovery values were 37% and 76% for PCBs, and 58% and 48% for PAHs, respectively, for the leachate and reference sediment studied. The method allows the determination of PAHs and PCBs in landfill leachates and sediments, avoiding clean-up steps and the consumption of organic solvents.  相似文献   

6.
Abstract

For the determination of minute amounts of elements in environmental samples combined analytical procedures are frequently employed. The combination of suitable sample preparation techniques with adequate detection methods lead to powerful analytical procedures. Decomposition methods are an important part of combined procedures for the determination of trace elements in solid samples. After a short summary of the potential sources for systematic errors two new decomposition methods are described that are suitable for the ashing of organic environmental samples. In one method the organic sample is ashed in a high-frequency excited oxygen plasma. The second method is a high pressure decomposition that permits mineralization of the sample in sealed quartz vessels with nitric acid at temperatures up to 320°C.

For both methods the ratio of sample weight to decomposition reagents is comparatively high. This makes these methods in combination with adequate detection methods suitable for the determination of elements at very low concentrations.

X-ray fluorescence spectrometry combined with adequate preconcentration methods is very well suited for the simultaneous determination of trace elements. Following a critical evaluation of various preconcentration techniques the analytical characteristics of filter paper with immobilized complexing agents are described. Particular emphasis is given to filter papers with dithiocarbamates as chelating group.  相似文献   

7.
A very simple and quick analytical method, based on direct aqueous injection, for determination of halogenated solvents in refinery water and wastewater, is described. There is a need to determine halogenated solvents in refinery water streams, because they may originate from several processes. There is also a need to develop methods enabling VOX to be determined in samples containing oil fractions. The method described enables simultaneous determination of 26 compounds with low detection limits (sub-μg L−1) and excellent precision, especially for highly halogenated solvents. The matrix effects of four types of sample were evaluated—the method seemed to be relatively insensitive to variations in matrix composition. Deuterated 1,2-dichloroethane was used as internal standard and surrogate compound in quantitative analysis; application of isotopically labelled compounds is rarely reported when non-mass spectrometric detectors are used for analysis. Analysis of real samples showed that the most frequently detected compounds were dichloromethane and 1,2-dichloroethane.  相似文献   

8.
The purpose of this short review is to describe the origins and the principles of operation of selected-ion flow-tube mass spectrometry (SIFT-MS) and proton-transfer-reaction mass spectrometry (PTR-MS), and their application to the analysis of biogenic volatile organic compounds (BVOCs) in ambient air, the humid air (headspace) above biological samples, and other samples. We briefly review the ion chemistry that underpins these analytical methods, which allows accurate analyses. We pay attention to the inherently uncomplicated sampling methodologies that allow on-line, real-time analyses, obviating sample collection into bags or onto traps, which can compromise samples.Whilst these techniques have been applied successfully to the analysis of a wide variety of media, we give just a few examples of data, including for the analysis of BVOCs that are present in tropospheric air and those emitted by plants, in exhaled breath and in the headspace above cell and bacterial cultures (which assist clinical diagnosis and therapeutic monitoring), and the products of combustion. The very wide dynamic ranges of real-time analyses of BVOCs in air achieved by SIFT-MS and PTR-MS - from sub-ppbv to tens of ppmv - ensure that these analytical methods will be applied to many other media, especially when combined with gas-chromatography methods, as recently trialed.  相似文献   

9.
An on-line preconcentration system for the simultaneous determination of Copper (Cu) and manganese (Mn) in water samples was developed and coupled to a microwave-induced plasma optical emission spectrometer (MIP OES). The flow injection system was designed with a minicolumn packed with sisal fiber (Agave sisalana). A multivariate experimental design was performed to evaluate the influence of pH, preconcentration time, and eluent concentration. Optimal conditions for sample preparation were pH 5.5, preconcentration time was 90 s, and HCl 0.5 mol L−1 was the eluent. The main figures of merit were detection limits 3.7 and 9.0 µg L−1 for Cu and Mn, respectively. Precision was expressed as a relative standard deviation better than 10%. Accuracy was evaluated via spiked recovery assays with recoveries between 75–125%. The enrichment factor was 30 for both analytes. These results were adequate for water samples analysis for monitoring purposes. The preconcentration system was coupled and synchronized with the MIP OES nebulizer to allow simultaneous determination of Cu and Mn as a novel sample introduction strategy. The sampling rate was 20 samples/h. Sisal fiber resulted an economical biosorbent for trace element preconcentration without extra derivatization steps and with an awfully time of use without replacement complying with the principles of green analytical methods.  相似文献   

10.
Soil samples were suspended in a suitable aqueous solvent and a solid phase microextraction (SPME) fibre was used to sample the headspace (HS) for five volatile chlorinated compounds (VOX). Their determination was made by GC-ECD technique in the splitless mode. Preliminary studies on the effects of methanol and of the sand/clay ratio on the fibre extraction were made. Four experimental factors, namely, extraction time, extraction temperature, pH and NaCl%, able to affect distribution of the analytes among the four different phases, were varied in suitable ranges. A multivariate approach applied to the face centred cube (FCC) experimental design, was used to try to optimise the overall sample response. The suitable set of factors found for the determination of chloroform, 1,2-dichloroethane, trichloroethylene, 1,1 ,2-trichloroethane, 1,1,2,2-tetrachloroethane, was a compromise among the relevant optimal factor sets of the single analytes. Detection limits of 0.003 ng, 0.022 ng, 0.001 ng, 0.015 ng and 0.002 ng were found respectively for the five cited analytes. The method was successfully used to determine the analyte contents in two real soils sampled in an industrial area.  相似文献   

11.
This article reviews the most recent literature addressing the analytical methods applied for trihalomethanes (THMs) determination in water samples. This analysis is usually performed with gas chromatography (GC) combined with a preconcentration step. The detectors most widely used in this type of analyses are mass spectrometers (MS) and electron capture detectors (ECD). Here, we review the analytical characteristics, the time required for analysis, and the simplicity of the optimised methods. The main difference between these methods lies in the sample pretreatment step; therefore, special emphasis is placed on this aspect. The techniques covered are direct aqueous injection (DAI), liquid-liquid extraction (LLE), headspace (HS), and membrane-based techniques. We also review the main chromatographic columns employed and consider novel aspects of chromatographic analysis, such as the use of fast gas chromatography (FGC). Concerning the detection step, besides the common techniques, the use of uncommon detectors such as fluorescence detector, pulsed discharge photoionization detector (PDPID), dry electrolytic conductivity detector (DELCD), atomic emission detector (AED) and inductively coupled plasma-mass spectrometry (ICP-MS) for this type of analysis is described.  相似文献   

12.
Over the last few years, breath analysis for the routine monitoring of metabolic disorders has attracted a considerable amount of scientific interest, especially since breath sampling is a non-invasive technique, totally painless and agreeable to patients. The investigation of human breath samples with various analytical methods has shown a correlation between the concentration patterns of volatile organic compounds (VOCs) and the occurrence of certain diseases. It has been demonstrated that modern analytical instruments allow the determination of many compounds found in human breath both in normal and anomalous concentrations. The composition of exhaled breath in patients with, for example, lung cancer, inflammatory lung disease, hepatic or renal dysfunction and diabetes contains valuable information. Furthermore, the detection and quantification of oxidative stress, and its monitoring during surgery based on composition of exhaled breath, have made considerable progress. This paper gives an overview of the analytical techniques used for sample collection, preconcentration and analysis of human breath composition. The diagnostic potential of different disease-marking substances in human breath for a selection of diseases and the clinical applications of breath analysis are discussed.  相似文献   

13.
A novel magnetic method using polystyrene modified magnetic nanoparticles to perform thermoheadspace extraction was successfully developed for extraction and preconcentration of volatile organic components in dry Traditional Chinese Medicine(TCM) based on gas chromatography-ion trap/mass spectrometry with a Chromato Probe direct sample introduction device. The dried fruit of Amomum testaceum Ridl. was used as the object TCM. The optimum parameters of headspace magnetic solid-phase extraction were investigated, in which desorption solvent ethyl acetate played a key role in this method,and the headspace extraction temperature of 90℃ and the headspace extraction time of 15 min finally decided. Headspace solid-phase microextraction method was also used to analyze volatile compounds in the TCM to compare with the proposed method. The results show that 60 components were identified totally by two methods; most of the low boiling point chemical compounds are isolated by this new method. In this work, an environmental-friendly and cheap analytical method was established, and a new approach to analyze volatile compounds in dry Traditional Chinese Medicine was also provided.  相似文献   

14.
Detection of biomarkers in exhaled breath has been gaining increasing attention as a tool for diagnosis of specific diseases. However, rapid and accurate quantification of biomarkers associated with specific diseases requires the use of analytical methods capable of fast sampling and preconcentration from breath matrix. In this regard, solid phase microextraction and needle trap technology are becoming increasingly popular in the field of breath analysis due to the unique benefits imparted by such methods, such as the integration of sampling, extraction, and preconcentration in a single step. This review discusses recent advances in breath analysis using these sample preparation techniques, providing a summary of recent developments of analytical methods based on breath volatile organic compounds analysis, including the successful identification of various biomarkers related to human diseases.  相似文献   

15.
Summary The theoretical basis of the optimization of the TLHS analysis has been further developed. A critical value of the enrichment factor (Fcr, inf) has been defined as the value, at which the relative systematic error and the relative precision error are equal. These errors have been defined with respect to the maximum and the inflexion point of the recovery curve of the volatile analyte in the liquid sorbent. Two methods of volatile organic halogen (VOX) determination in tap water, viz. the conductometric and the indirect potentiometric method, have been compared (with respect to their analytical characteristics) using natural samples. The accuracy of both methods proved to be similar, yet the conductometric method was more precise. The variances of the methods occurred to be homogeneous in the particular measuring series independently of the long time intervals between the particular measuring series and the differentiated VOX levels.Part IV see [4]  相似文献   

16.
Etievant  P.  Maarse  H.  van den Berg  F. 《Chromatographia》1986,21(7):379-386
Summary A number of headspace techniques have been compared, using a standard solution containing 12 compounds and a wine sample, viz.: (1) purge and cold trap injection; (2) dynamic headspace combined with liquidliquid extraction; (3) static headspace with and without preconcentration; (4) direct liquid injection. The sensitivity, reproducibility and speed of analysis were determined. Considering the results obtained and dependent on the purpose of the experiments and the number of samples to be examined the appropriate technique can be selected.  相似文献   

17.
A sensitive method for the fast analysis of filbertone in spiked olive oil samples is presented. The applicability of a headspace (HS) autosampler in combination with a gas chromatograph (GC) equipped with a programmable temperature vaporizer (PTV) and a mass spectrometric (MS) detector is explored. A modular accelerated column heater (MACHTM) was used to control the temperature of the capillary gas chromatography column. This module can be heated and cooled very rapidly, shortening total analysis cycle times to a considerable extent. The proposed method does not require any previous analyte extraction, filtration and preconcentration step, as in most methods described to date. Sample preparation is reduced to placing the olive oil sample in the vial. This reduces the analysis time and the experimental errors associated with this step of the analytical process. By using headspace generation, the volatiles of the sample are analysed without interference by the non-volatile matrix, and by using injection in solvent-vent mode at the PTV inlet, most of the compounds that are more volatile than filbertone are purged and the matrix effect is minimised. Use of a liner packed with Tenax-TA? allowed the compound of interest to be retained during the venting process. The limits of detection and quantification were as low as 0.27 and 0.83 μg/L, respectively, and precision (measured as the relative standard deviation) was 5.7%. The method was applied to the determination of filbertone in spiked olive oil samples and the results revealed the good accuracy obtained with the method.  相似文献   

18.
Odorous organic compounds from liquid and gas samples of animal wastes were studied by headspace (HS)-solid-phase microextraction (SPME)-GC-MS. 1-Pirenyldiazomethane (PDAM) was adsorbed/absorbed on the SPME fibre in order to obtain the corresponding ester derivatives during the preconcentration step. The SPME fibre was immersed into a PDAM solution. Then, the SPME fibre was withdrawn and exposed to the HS of the liquid cow slurry. This way derivatisation of VFAs took place in the SPME fibre together with the preconcentration of the rest of the analytes of interest. The analytes were desorbed in the hot injection port (300 degrees C) of a GC-MS for 3 min. Four different fibre types and different immersion periods of the fibre in the PDAM solution were studied in order to obtain the best sensitivity with the selected fibre. Accuracy, precision and the LODs were calculated using spiked liquid and gas samples. The possibility of storing liquid samples after sampling by preconcentration on the fibre was also considered. Storage time and temperature were studied. The optimised method was applied to the determination of the analytes in liquid and gas samples from cow slurries from an intensive production farm.  相似文献   

19.
A combined method of dynamic headspace-needle trap sample preparation and gas chromatography for the determination of formic and acetic acids in aqueous solution was developed in this study. A needle extraction device coupled with a gas aspirating pump was intended to perform sampling and preconcentration of target compounds from aqueous sample before gas chromatographic analysis. The needle trap extraction (NTE) technique allows for the successful sampling of short chain fatty acids under dynamic conditions while keeping the headspace (HS) volume constant. Two important parameters, including extraction temperature and effect of acidification, have been optimized and evaluated using the needle trap device. The method detection limits for the compounds estimated were 87.2microg/L for acetic acid and 234.8microg/L for formic acid in spite of the low flame ionization detection response for formic acid and its low Henry's law constant in aqueous solution. Precision was determined based on the two real samples and ranged between 4.7 and 10.7%. The validated headspace-needle trap extraction method was also successfully applied to several environmental samples.  相似文献   

20.
Landfilling is the most common disposal of municipal waste. During the decomposition of different waste materials, several toxic compounds are leached. Although organotin compounds (OTC) represent an important group of pollutants in landfill leachates, there are only few analytical procedures reported for their analysis. These procedures are complex or recommend the use of enriched stable isotopes that are available only for butyltins. In the present work analytical procedure for simultaneous routine speciation analysis of methyl-, butyl-, phenyl- and octyl-tins in landfill leachates by GC-ICP-MS was developed. For this purpose the applicability of methanol as co-extraction reagent and Tris-citrate buffer for adjustment of pH for derivatization of OTC in landfill leachates was carefully investigated. The use of NaBEt(4) and NaBPr(4) as derivatization reagents for liquid-liquid extraction into hexane was critically evaluated. 15m GC column was used for rapid separation of OTC. The developed analytical procedure was sensitive (LODs for OTC investigated in general better than 2 ng Sn L(-1)) with good repeatability of measurement (RSDs mostly better than 3%) and was successfully applied in the analysis of OTC in landfill leachates using standard addition calibration method. Due to its simplicity and reliability it is appropriate to be used in routine laboratories for monitoring of OTC in landfill leachates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号