首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of DPKSH (di-2-pyridylketone salicyloylhydrazone) adsorption onto silica gel has been investigated at (25+/-1) degrees C and pH 1 and 4.7. The kinetics of adsorption of DPKSH is discussed using three kinetic models, the first-order Lagergren model, the pseudo-second-order model, and the intraparticle diffusion model. The adsorption of DPKSH, at pH 1 and 4.7, onto silica gel proceeds according to the pseudo-second-order model and the correlation coefficients were very close to 1. The intraparticle diffusion of DPKSH molecules within the silica gel particles was identified as the rate-limiting step. The parameters of the pseudo-second-order model are q(max,calc)=1.02 x 10(-4) and 1.5 x 10(-4) g DPKSH/g silica; k(2)=3.01 x 10(4) and 9.67 x 10(4) h(-1)g silica/g DPKSH, respectively, for pH 1 and 4.7.  相似文献   

2.
Zhang L  Zhang M  Guo X  Liu X  Kang P  Chen X 《Talanta》2010,83(2):344-350
Titanium dioxide nanoparticles (nano-TiO2) were employed for the sorption of Te(IV) ions from aqueous solution. A detailed study of the process was performed by varying the sorption time, pH, and temperature. The sorption was found to be fast, equilibrium was reached within 8 min. When the concentration of Te(IV) was below 40 mg L−1, at least 97% of tellurium was adsorbed by nano-TiO2 in the pH range of 1-2 and 8-9. The sorbed Te(IV) ions were desorbed with 2.0 mL of 0.5 mol L−1 NaOH. The sorption data could be well interpreted by the Langmuir model with the maximum adsorption capacity of 32.75 mg g−1 (20 ± 0.1 °C) of Te(IV) on nano-TiO2. The kinetics and thermodynamics of the sorption of Te(IV) onto nano-TiO2 were also studied. The kinetic experimental data properly correlated with the second-order kinetic model (k2 = 0.0368 g mg−1 min−1, 293 K). The overall rate process appeared to be influenced by both boundary layer diffusion and intra-particle diffusion. The mean energy of adsorption was calculated to be 17.41 kJ mol−1 from the Dubinin-Radushkevich (D-R) adsorption isotherm at room temperature. Moreover, the thermodynamic parameters for the sorption were estimated, and the ΔH0 and ΔG0 values indicated the exothermic and spontaneous nature of the sorption process, respectively. Finally, Nano-TiO2 as sorbent was successfully applied to the separation of Te(IV) from the environmental samples with satisfactory results (recoveries >95%, relative standard deviations was 2.0%).  相似文献   

3.
Sorption studies of europium(III) on hydrous silica   总被引:1,自引:0,他引:1  
Summary Sorption behavior of europium, Eu3+, on SiO2 . xH2O (silica gel) has been investigated as a function of time, the amount of silica gel, Eu3+ concentration, the ionic strength, and pH (in absence and in presence of carbonate). The sorption data were fitted to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherms. The sorption capacity of silica gel was determined to be in the range of (2.62-8.00) . 10-7 mol/g at pH 5.30±0.05 and 0.20M NaClO4. The mean energy of sorption was calculated to be 13.50±0.05 kJ/mol from the D-R isotherm, suggesting the involvement of ion-exchange reactions in the sorption process. Sorption of Eu3+ decreased with increased ionic strength. A gradual decrease in pH with increased ionic strength supports the involvement of an ion-exchange mechanism in the sorption process. The diffusion coefficient of Eu3+ ion on silica gel was calculated as (3.98±0.12) . 10-13 m2 . s-1 under the particle diffusion-controlled conditions.  相似文献   

4.
This study evaluates the adsorption of diazinon from aqueous solutions onto coconut shell-modified biochar using a batch system. The amount of dosage and initial pH are the main parameters being studied to obtain maximum adsorption capacity of the probe molecules. The carbonized coconut shell biochar (BC1), activated coconut shell biochar (BC2), chemically modified phosphoric acid (BC3) and sodium hydroxide coconut shell biochar (BC4) were prepared and tested as variables in the adsorption experiment. The characteristic of biochar via SEM, EDX and BET analysis revealed the large porous of surface morphology and slight changes in the composition with high surface area (405.97 – 508.07 m2/g) by following the sequence of BC3 > BC2 > BC4. Diazinon removal percentage as high as 98.96% was achieved at pH 7 with BC3 as adsorbent dosing at 5.0 g/L. The high coefficient of determination, R2 with a small value of ERRSQ and χ2 error analysis present the BC1 (0.9971) and BC2 (0.9999) are best fitted with Freundlich isotherm indicates multilayer sorption onto heterogeneous surface whereby the Langmuir isotherm model is the best fitting is described of monolayer adsorption process onto the homogenous surface of BC3 and BC4. The results indicated the maximum adsorption capacity (qm) was achieved by BC3 with 10.33 mg/g, followed by BC2 (9.65 mg/g) in accordance to the Langmuir isotherm while Freundlich isotherm showed the highest adsorption capacity (kF) with 1.73 mg/g (L/mg)1/n followed by BC4 with 0.63 mg/g (L/mg)1/n at favorable adsorption isotherm (1 ≤ n ≤ 10). Thus, the results obtained depicted that BC2 and BC3 are highly efficient adsorbents and both exhibit great potential in removing diazinon from aqueous solutions.  相似文献   

5.
A novel and sensitive extraction procedure using maghemite nanoparticles (γ-Fe2O3) modified with sodium dodecyl sulfate (SDS), as an efficient solid phase, was developed for removal, preconcentration and spectrophotometric determination of trace amounts of malachite green (MG) and leuco-malachite green (LMG). Combination of nanoparticle adsorption and easily magnetic separation was used to extraction and desorption of MG and LMG. The adsorption capacity was evaluated using both the Langmuir and Freundlich adsorption isotherm models. Maghemite nanoparticles were prepared by co-precipitation method and their surfaces were modified by SDS. The size and properties of the produced maghemite nanoparticles was determined by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and BET analysis. MG and LMG became adsorbed at pH 3.0. LMG was oxidized to MG by adsorption on maghemite nanoparticles. The adsorbed MG was then desorbed and determined spectrophotometrically. The calibration graph was linear in the range 0.50-250.00 ng mL−1 of MG and LMG with a correlation coefficient of 0.9991. The detection limit of the method for determination of MG was 0.28 ng mL−1 and the relative standard deviation (R.S.D.) for 10.00 and 50.00 ng mL−1 of malachite green was 1.60% (n = 3) and 0.86% (= 5), respectively. A preconcentration factor of 50 was achieved in this method. The Langmuir adsorption capacity (qmax) was found to be 227.3 mg g−1 of the adsorbent. The method was applied to the determination of MG in fish farming water samples.  相似文献   

6.
The sorption behaviour of 2.5 × 10−5 M solution of Cd(II) on polyurethane foam (PUF) from iodide medium have been investigated. The conditions were optimized from aqueous solutions of different pH (1-10) and of acids of varied concentration (0.01-1.0 M). The maximum concentration of KI was found to be 0.24 M and equilibration time was established to be 20 min. The data successfully followed the Freundlich and Dubinin-Radushkevich (D-R) isotherms at low metal ion concentration while Langmuir isotherm followed at higher metal ion concentration. The Freundlich parameter 1/n = 0.66 ± 0.02 have been evaluated whereas D-R isotherm yields the sorption free energy E = 10.5 ± 0.1 kJ mol−1 indicating ion exchange type chemisorption. The monolayer coverage (XL) constant of Langmuir isotherm was found to be 23.7 ± 0.4 mg g−1. The numerical values of thermodynamics parameters enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG) indicated the endothermic and spontaneous nature of sorption. The Scatchard plot analysis was tested to evaluate the binding sites of the PUF and stability constants of sorption were determined. On the basis of these parameters, the sorption mechanism was discussed. Among the foreign ions tested, Pb(II), Hg(II), cyanide and nitrite should be absent. The clean separation of Cd(II) from Zn(II) ions in the ratio 1:250, respectively, was achieved by column chromatography.  相似文献   

7.
The adsorption behavior of Ni(II) onto bentonite was studied as a function of temperature under optimized conditions of shaking time, amount of adsorbent, pH, and concentration of the adsorbate. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° were calculated from the slope and intercept of the linear plot of lgKD against 1/T. Analysis of adsorption results obtained at T=(298, 303, 313, and 323) K showed that the adsorption pattern on bentonite followed the Langmuir, Freundlich, and D-R isotherms. A flame atomic absorption spectrophotometer was used for measuring the concentration of Ni(II).  相似文献   

8.
The adsorption of Sr on clay which contains zeolites and montmorillonite mixtures was investigated in solutions of NaCl by means of a batch technique. Sr retention was reduced with increasing NaCl concentration from 5·10–4 to 5·10–1M. Distribution coefficients (K d ) linearly increased with pH in the acidic region but they were almost independent of pH in neutral and alkaline solutions. By fitting the data of the Dubinin-Radushkevich (D-R) isotherm, the mean energies of adsorption and adsorption capacities of Sr at different pH values were calculated. The results showed that the mode of adsorption below pH 4.5 is ion exchange, while above that value a multilayer adsorption occurs. Adsorption data were fitted to the Freundlich isotherm and from empirical Freundlich parameters a site distribution function was calculated.  相似文献   

9.
Equilibrium, kinetics and thermodynamic aspects of sorption of Promethazine hydrochloride (PHCl) onto iron rich smectite (IRS) from aqueous solution were investigated. The effect of pH on sorption of PHCl onto IRS was also found out. Experimental data were evaluated by using Langmuir, Freundlich and Dubinin–Raduschkevich (DR) isotherm equations. Freundlich and DR equations provided better compatibility than Langmuir equation. Besides, it was determined that the maximum sorption of PHCl takes place at about pH 5. From kinetic studies, it was obtained that sorption kinetics follow pseudo-second-order kinetic model for PHCl sorption onto IRS. When thermodynamic studies are concerned, the values of activation energy (Ea), ΔG°, ΔH° and ΔS° were obtained. ΔG° values are in the range of −8.84 and −9.45 kJ mol−1 indicating spontaneous nature of physisorption. The negative value of the ΔH° (−3.20 kJ mol−1) indicates exothermic nature of adsorption. FTIR analysis and SEM observations of IRS and PHCl adsorbed IRS were also carried out. Sorption experiments indicate that IRS may be used effectively for the adsorption of PHCl.  相似文献   

10.
The present study describes the adsorption characteristic of Cd(II) onto Nb2O5/Al2O3 mixed oxide dispersed on silica matrix. The characterization of the adsorbent has been carried out by infrared spectroscopy (IR), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), energy dispersive X-ray fluorescence analysis (EDXRF) and specific surface area (SBET). From batch experiments, adsorption kinetic of Cd(II) was described by a pseudo-second-order kinetic model. The Langmuir linear isotherm fitted to the experimental adsorption isotherm very well, and the maximum adsorption capacity was found to be 17.88 mg g−1. Using the effective material, a method for Cd(II) preconcentration at trace level was developed. The method was based on on-line adsorption of Cd(II) onto SiO2/Al2O3/Nb2O5 at pH 8.64, in which the quantitative desorption occurs with 1.0 mol L−1 hydrochloric acid towards FAAS detector. The experimental parameters related to the system were studied by means of multivariate analysis, using 24 full factorial design and Doehlert matrix. The effect of SO42−, Cu2+, Zn2+ and Ni2+ foreign ions showed no interference at 1:100 analyte:interferent proportion. Under the most favorable experimental conditions, the preconcentration system provided a preconcentration factor of 18.4 times, consumption index of 1.08 mL, sample throughput of 14 h−1, concentration efficiency of 4.35 min−1, linear range from 5.0 up to 35.0 μg L−1 and limits of detection and quantification of 0.19 and 0.65 μg L−1 respectively. The feasibility of the proposed method for Cd(II) determination was assessed by analysis of water samples, cigarette sample and certified reference materials TORT-2 (Lobster hepatopancreas) and DOLT-4 (Dogfish liver).  相似文献   

11.
A method is reported for surface grafting of polymer containing a functional monomer for metal chelating, poly[1-(N,N-bis-carboxymethyl)amino-3-allylglycerol-co-dimethylacrylamide] (poly(AGE/IDA-co-DMAA) onto silica modified by silylation with 3-mercaptopropyltrimethoxysilane. Monomer 1-(N,N-bis-carboxymethyl)amino-3-allylglycerol (AGE/IDA) was synthesized by reaction of allyl glycidyl ether with iminodiacetic acid. The resulting sorbent has been characterized using FT-IR, elemental analysis, thermogravimetric analysis (TGA), FT-Raman and scanning electron microscopy (SEM) and evaluated for the preconcentration and determination of trace Pb(II) in human biological fluid and environmental water samples. The optimum pH value for sorption of the metal ion was 5.5. The sorption capacity of functionalized resin was 15.06 mg g−1. The chelating sorbent can be reused for 15 cycles of sorption–desorption without any significant change in sorption capacity. A recovery of 96.2% was obtained for the metal ion with 0.5 M nitric acid as eluting agent. The profile of lead uptake by the sorbent reflects good accessibility of the chelating sites in the poly(AGE/IDA-co-DMAA)-grafted silica gel. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The equilibrium adsorption data of Pb(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich–Peterson models. On the basis of equilibrium adsorption data the Langmuir, Freundlich and Temkin constants were determined as 0.70, 1.35 and 2.7, respectively at pH 5.5 and 20 °C. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption.  相似文献   

12.
A modified bentonite was prepared at different surfactant (ODTMA) loadings through ion exchange. The obtained organobentonite adsorbent materials were then used for the removal of an anionic dye, tartrazine, from an aqueous solution. The bentonite was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Brunauer- Emmett-Teller (BET) method. The modification of organophilic bentonite by ODTMA increases the basal spacing d001 from 24.1 to 39.1 Å when the cation exchange capacity increases from 1 to 4. The increase in the spacing, due to the basic organic modifications, was confirmed by the results of thermogravimetric analysis, Fourier transform infrared spectroscopy, and BET. The effects of contact time, initial concentration, and solution pH onto an adsorbed amount of tartrazine were investigated. To predict adsorption isotherm, the experimental data were analyzed using the Langmuir and Freundlich isotherm equations. It was determined that the isotherm data were fitted to the Langmuir isotherm. The adsorption process was also found to follow a pseudo-second-order kinetic model.  相似文献   

13.
Summary A tail-made polymer matrix is proposed to remove strontium ions from aqueous solutions. The removal behavior of strontium ions on a crosslinked copolymer containing methacrylic acid as functional groups was investigated as a function of sorptive concentration, time, temperature and pH. It was observed that an increase of these parameters enhanced the removal of Sr(II) ions from aqueous solution. It is found that a maximum adsorption of Sr(II) ions can be obtained on the crosslinked copolymer after 30 minutes and at pH 8. The increase of Sr(II) ion concentration in the solution resulted in an increase in the amount of Sr(II) ions adsorbed on the crosslinked copolymer containing methacrylic acid as functional groups. However, after a maximum of Sr(II) concentration in the solution, the percentage of adsorbed Sr(II) ions decreased. The adsorption data are well represented by the Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherms. The adsorption capacity of the copolymer and the free energy change were calculated by using the D-R isotherm. For the adsorption of Sr(II) ions on the crosslinked copolymer the thermodynamic parameters (DH°,DS° andDG°) were calculated.</p> </p>  相似文献   

14.

In order to separate and pre-concentrate uranium from aqueous phase, a novel silica-based adsorbent was prepared by impregnating nalidixic acid (HNA) into a macroreticular silica/polymer composite support (SiO2-P) with a mean diameter of 60 μm. Adsorption behavior of uranium from aqueous solution onto the adsorbent was studied. Experimental results indicated that HNA/SiO2-P showed strong adsorption for uranium in a wide range of pH from 3.5 to 10.0, and the maximum adsorption capacity was 35.4 mg g−1. In addition, HNA/SiO2-P exhibited good selectivity for U(VI) and showed weak or bare adsorption affinity to foreign ions. Kinetic and isotherm of uranium adsorption were in accordance with the pseudo-second-order kinetic model and Langmuir isotherm adsorption model, respectively. Moreover, U(VI) sorption was found to be an endothermic reaction and spontaneous under experimental state. The synthesized adsorbent showed an admirable stability at lower pH values in aqueous solution.

  相似文献   

15.
The use of perlite for the removal of victoria blue from aqueous solution at different concentration, ionic strength, pH and temperature has been investigated. Adsorption process is attained to the equilibrium within 1 h. It is found that the adsorption capacity of perlite samples for the removal of victoria blue increased by increasing pH and temperature, and decreased by expansion and ionic strength. The adsorption isotherms are described by means of the Langmuir and Freundlich isotherms. The adsorption isotherm was measured experimentally at different conditions, and the experimental data were correlated reasonably well by the adsorption isotherm of the Langmuir, and the isotherm parameters (Q m and K) have been calculated for perlite samples as well. It is concluded that victoria blue is physically adsorbed onto the perlite. The removal efficiency (P) and dimensionless seperation factor (R) have shown that perlite can be used for removal of victoria blue from aqueous solutions, but unexpanded perlite is more effective.  相似文献   

16.
Magnetic nanoparticles with monodisperse shape and size were prepared by a simple method and covered by silica. The prepared core-shell Fe3O4@silica nanoparticles were functionalized by amino groups and characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer-Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. The synthesized nanoparticles were employed as an adsorbent for removal of Hg2+ from aqueous solutions, and the adsorption phenomena were studied from both equilibrium and kinetic point of views. The adsorption equilibriums were analyzed using different isotherm models and correlation coefficients were determined for each isotherm. The experimental data were fitted to the Langmuir–Freundlich isotherm better than other isotherms. The adsorption kinetics was tested for the pseudo-first-order, pseudo-second-order and Elovich kinetic models at different initial concentrations of the adsorbate. The pseudo-second-order kinetic model describes the kinetics of the adsorption process for amino functionalized adsorbents. The maximum adsorption occurred at pH 5.7 and the adsorption capacity for Fe3O4@silica-NH2 toward Hg2+ was as high as 126.7 mg/g which was near four times more than unmodified silica adsorbent.  相似文献   

17.
The interaction of methylene blue (MB) dye with natural coal (collected from coal landfills of the Kosovo Energy Corporation) in aqueous solutions was studied using adsorption, kinetics, and thermodynamic data, and Monte Carlo (MC) calculations. In a batch procedure, the effects of contact duration, initial MB concentration, pH, and solution temperature on the adsorption process were examined. The Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D–R) isotherms were used to examine the equilibrium adsorption data. The equilibrium data fit well to the Freundlich and Langmuir adsorption isotherm models; however, the Freundlich model suited the adsorption data to a slightly better extent than the Langmuir model. The kinetics experimental data was fitted using pseudo-first-order, first-order, pseudo-second-order, second-order, Elvoich equation, and diffusion models. The pseudo-second-order rate model manifested a superlative fit to the experimental data, while the adsorption of MB onto coal is regulated by both liquid film and intraparticle diffusions at the same time. Thermodynamic parameters, such as Gibbs free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) were calculated. The adsorption of MB was confirmed to be spontaneous and endothermic. The theoretical results were in agreement with the experimental ones.  相似文献   

18.
Adsorption of strontium on illite type clay has been studied as a function of shaking time, the ratio of solution volume to weight of clay and the concentration of adsorbate, using 90Sr as a tracer. The adsorption experiments were carried out using the batch method and initial Sr2+ ion concentrations ranged from 10–6 to 10–1 M. The influence of Ca2+ and Ba2+ cations on Sr adsorption were also studied. These effects are correlated with the ionic radii of alkaline earth ions present in the solution. The Freundlich and Dubinin Radushkevich (D-R) isotherm have been applied to the data and the parameters of the isotherm equations were calculated. The mean energy of adsorption, E was also calculated from the adsorption energy constant, K and maximum capacity X m values were determined from linearized D-R equation. From empirical Freundlich parameters a site distribution function was calculated.  相似文献   

19.
Abstract

Fe3O4@SiO2@NH2 nanocomposite was prepared for highly effective adsorption of two anionic dyes one of which is triarylmethane dye (light green, LG) and the other is azo dye (brilliant yellow, BY). The characterization results demonstrated that superparamagnetic Fe3O4 nanoparticles were covered with silica and functionalized with amino groups successfully without losing magnetic character. The effects of adsorbent dosage, contact time, pH, temperature, and dye molecular structure on the adsorption were investigated. Acidic pH was better for both LG and BY, on the other hand, alkaline pH was favorable to some extent for LG in comparison with BY due to the contribution of stacking effect in addition to electrostatic attraction. Kinetic data demonstrated that the driving force for adsorption process could be explained by pseudo-second order mechanism in both systems. The equilibrium data were more compatible with Langmuir isotherm than those of Freundlich isotherm and the maximum adsorption capacities of Fe3O4@SiO2@NH2 calculated from Langmuir isotherm model for LG and BY at 30?°C and natural pH of the solution were 40.2 and 35.5?mg g?1. Thermodynamic calculations related to temperature dependence demonstrated that the adsorption process was spontaneous and exothermic.  相似文献   

20.
Adsorption of vanadium(V) from aqueous solution onto ZnCl2 activated carbon developed from coconut coir pith was investigated to assess the possible use of this adsorbent. The influence of various parameters such as agitation time, vanadium concentration, adsorbent dose, pH and temperature has been studied. First, second order, Elovich and Bangham’s models were used to study the adsorption kinetics. The adsorption system follows second order and Bangham’s kinetic models. Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms have been employed to analyze the adsorption equilibrium data. Equilibrium adsorption data followed all the four isotherms—Langmuir, Freundlich, D-R and Temkin. The Langmuir adsorption capacity (Q 0) was found to be 24.9 mg g− 1 of the adsorbent. The per cent adsorption was maximum in the pH range 4.0–9.0. The pH effect and desorption studies showed that ion exchange mechanism might be involved in the adsorption process. Thermodynamic parameters such as ΔG 0, ΔH 0 and ΔS 0 for the adsorption were evaluated. Effect of competitive anions in the aqueous solution such as PO4 3 −, SO4 2−, ClO4 , MoO4 2−, SeO3 2−, NO3 and Cl was examined. SEM and FTIR were used to study the surface of vanadium(V) loaded ZnCl2 activated carbon. Removal of vanadium(V) from synthetic ground water was also tested. Results show that ZnCl2 activated coir pith carbon is effective for the removal of vanadium(V) from water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号