首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A liquid-phase microextraction method for the determination of trihalomethanes (THMs) including chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl) and bromoform (CHBr3) in water samples was developed, with analysis by gas chromatography-electron capture detection (GC-ECD). After the determination of the most suitable solvent and stirring rate for the extraction, several other parameters (solvent drop volume, extraction time and ionic strength of the sample) were optimized using a factorial design to obtain the most relevant variables. The optimized extraction conditions for 5 mL of sample volume in a 10 mL vial were as follows: n-hexane an organic solvent; a solvent drop volume of 2 μL; an extraction time of 5.0 min; a stirring rate of 600 rpm at 25 °C; sample ionic strength of 3 M sodium chloride. The linear range was 1-75 μg L−1 for the studied THMs. The limits of detection (LODs) ranged from 0.23 μg L−1 (for CHBr2Cl) to 0.45 μg L−1 (for CHCl3). Recoveries of THMs from fortified distilled water were over 70% for a fortification level of 15 μg L−1, and relative standard deviations of the recoveries were below 5%. Real samples collected from tap water and well water were successfully analyzed using the proposed method. The recovery of spiked water samples was from 73% to 78% with relative standard deviations below 7%.  相似文献   

2.
In this study, a simple, rapid and efficient method, dispersive liquid-liquid microextraction (DLLME) combined gas chromatography-electron capture detection (GC-ECD), for the determination of chlorobenzenes (CBs) in water samples, has been described. This method involves the use of an appropriate mixture of extraction solvent (9.5 μl chlorobenzene) and disperser solvent (0.50 ml acetone) for the formation of cloudy solution in 5.00 ml aqueous sample containing analytes. After extraction, phase separation was performed by centrifugation and the enriched analytes in sedimented phase were determined by gas chromatography-electron capture detection (GC-ECD). Our simple conditions were conducted at room temperature with no stiring and no salt addition in order to minimize sample preparation steps. Parameters such as the kind and volume of extraction solvent, the kind and volume of disperser solvent, extraction time and salt effect, were studied and optimized. The method exhibited enrichment factors and recoveries ranging from 711 to 813 and 71.1 to 81.3%, respectively, within very short extraction time. The linearity of the method ranged from 0.05 to 100 μg l−1 for dichlorobenzene isomers (DCB), 0.002-20 μg l−1 for trichlorobenzene (TCB) and tetrachlorobenzene (TeCB) isomers and from 0.001 to 4 μg l−1 for pentachlorobenzene (PeCB) and hexachlorobenzene (HCB). The limit of detection was in the low μg l−1 level, ranging between 0.0005 and 0.05 μg l−1. The relative standard deviations (R.S.D.s) for the concentration of DCB isomers, 5.00 μg l−1, TCB and TeCB isomers, 0.500 μg l−1, PeCB and HCB 0.100 μg l−1 in water by using the internal standard were in the range of 0.52-2.8% (n = 5) and without the internal standard were in the range of 4.6-6.0% (n = 5). The relative recoveries of spiked CBs at different levels of chlorobenzene isomers in tap, well and river water samples were 109-121%, 105-113% and 87-120%, respectively. It is concluded that this method can be successfully applied for the determination of CBs in tap, river and well water samples.  相似文献   

3.
A simple and rapid extraction method based on headspace solid phase microextraction (HS-SPME) has been developed for the analysis of two antifouling agents, currently licensed for use in marine antifouling paints. Irgarol 1051 and Sea Nine 211 were extracted from aqueous solutions using polydimethylsiloxane-divinylbenzene (PDMS-DVB) 65 μm fiber and analyzed by gas chromatography (GC) with flame thermionic, electron capture and mass spectrometric detection. The extraction time, addition of Na2SO4 and the influence of organic matter, such as humic acid on extraction efficiency were examined in order to achieve a sensitive method. The optimized procedure was applied to spiked natural waters, such as sea water, river water and lake water in a concentration range of 0.5-50 μg l−1 in order to obtain the analytical characteristics. The linear calibration curve obtained (R2>0.990) for both analytes indicate that the presence of interfering compounds had no significant effect due to the high affinity of both analytes to the PDMS-DVB 65 μm fiber coating. Recoveries were in relatively high levels over >82% in all types of natural waters. The limits of detection (LODs) ranged from 0.002 to 0.030 μg l−1, depending on the detector and the compound investigated, with relative standard deviations in the range of 3-12% at all concentration levels tested. Finally, the proposed method was applied in real water samples from different marinas of Epirus region (NW Greece) in order to investigate its performance in precise and routine environmental analysis.  相似文献   

4.
Solid-phase microextraction method (SPME) coupled to GC/ECD has been developed and validated for the determination of phthalic acid esters (dimethyl-, diethyl-, di-n-butyl-, butylbenzyl-, di-2-ethylhexyl- and di-n-octyl phthalate) in water samples. Two types of coatings (PDMS, PA), altogether four different kinds of fibers have been investigated. Both parameters affecting the partition of analytes between a fiber coating and aqueous phase (i.e. extraction time, extraction temperature, agitation) and conditions of the thermal desorption in a GC injector were optimized. The final SPME method employing the polyacrylate fiber, extraction time 20 min, heating and stirring of the sample enabled the determination of all six phthalates in water samples. The method showed linear response over four orders of magnitude and the limits of quantification of the method ranged between 0.001 and 0.050 μg l−1. The repeatability expressed as R.S.D. was in the range 4-10% for the spiking level 7 μg l−1 of each analyte. The applicability of the developed SPME method was demonstrated for real water samples.  相似文献   

5.
The directly suspended droplet microextraction (DSDME) technique coupled with the capillary gas chromatography-flame ionization detector (GC-FID) was used to determine BTEX compounds in aqueous samples. The effective parameters such as organic solvent, extraction time, microdroplet volume, salt effect and stirring speed were optimized. The performance of the proposed technique was evaluated for the determination of BTEX compounds in natural water samples. Under the optimal conditions the enrichment factors ranged from 142.68 to 312.13, linear range; 0.01-20 μg mL−1, limits of detection; 0.8-7 ng mL−1 for most analytes. Relative standard deviations for 0.2 μg mL−1 of BTEX in water were in the range 1.81-2.47% (n = 5). The relative recoveries of BTEX from surface water at spiking level of 0.2 μg mL−1 were in the range of 89.87-98.62%.  相似文献   

6.
In this article, we report a new method that involves headspace single-drop microextraction and ion chromatography for the preconcentration and determination of fluoride. The method lies in the in situ hydrogen fluoride generation and subsequent sequestration into an alkaline microdrop (15 μL) exposed to the headspace above the stirred aqueous sample. The NaF formed in the drop was then determined by ion chromatography. The influences of some crucial single-drop microextraction parameters such as the extraction temperature, extraction time, sample stirring speed, sulphuric acid concentration and ionic strength of the sample, on extraction efficiency were investigated. In the optimal condition, an enrichment factor of 97 was achieved in 15 min. The calibration working range was from 10 μg L−1 to 2000 μg L−1 (R2 = 0.998), and the limit of detection (signal to noise ratio of 3) was 3.8 μg L−1 of fluoride. Finally, the proposed method was successfully applied to the determination of fluoride in different milk samples. The recoveries of fluoride (at spiked concentrations of 200 μg L−1 and 600 μg L−1 into milk) in real samples ranged from 96.9% to 107.7%. Intra-day precision (N = 3) in terms of peak area, expressed as relative standard deviation, was found to be within the range of 0.24-1.02%.  相似文献   

7.
The pyrethroid lambda-cyhalothrin is a common insecticide which is widespread in the environment. A study of the electrochemical reduction of the pesticide on a hanging mercury drop electrode (HMDE) was performed as basis for the development of a sensitive analytical method for determination of lambda-cyhalothrin in natural samples. Two electrochemical techniques—cyclic voltammetry (CV) and differential pulse voltammetry (DPV)—were applied. The study was performed in the pH range 2-13 using Britton-Robinson (B-R) buffer to control the pH of the measuring solutions and tetrabutylammonium chloride (TBAC) salt as supporting electrolyte. In DPV, a single reduction peak was observed at both pH<4.0 and pH>10.5 while two cathodic peaks were produced in the pH range 4.0-10.5. The results showed that the reduction of lambda-cyhalothrin in the measuring solution is irreversible. The limiting current was found to be diffusion-controlled and free of adsorption of the electroactive species to HMDE over the whole pH range tested. For the analytical DPV method running at pH 2 the relationship between peak current and lambda-cyhalothrin concentration was linear up to 500 μg l−1 (1.1×10−6 mol l−1) with a detection limit of 2.5 μg l−1. The repeatability in terms of relative standard deviation (n=10) was in the order of 3.5% at concentration levels of 5 and 10 μg l−1. A DPV method for determining lambda-cyhalothrin in the agrochemical formulation Karate, spiked soil and well water was developed. The recovery was about 94% in well water and 92% in soil samples at concentration range of 0.05-0.5 μg l−1 and 0.05-0.5 μg g−1, respectively.  相似文献   

8.
Yang M  Yang Y  Qu F  Lu Y  Shen G  Yu R 《Analytica chimica acta》2006,567(2):211-217
Anilinemethyltriethoxysilane (AMTEOS) was first used as precursor as well as selective stationary phase to prepare the sol-gel derived anilinemethyltriethoxysilane/polydimethylsiloxane (AMTEOS/PDMS) solid-phase microextraction (SPME) fibers. The novel SPME fiber exhibits high extraction efficiency, good thermal stability and long lifetime compared with commercial SPME coatings. In addition, the phenyl groups in the porous layer can exhibit π-π interactions with aromatic compounds, such as monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs). Therefore, SPME using the AMTEOS/PDMS sol-gel fiber coupled with GC-FID was recommended as a sensitive and selective method towards the analysis of these compounds in environmental water samples. The optimal extraction conditions were investigated by adjusting extraction time, salt addition, extraction temperature, and desorption time. The method showed linearity between 2 and 4000 μg l−1 for MAHs and 1 and 1000 μg l−1 for PAHs. The limit of detection (LOD) was 0.6-3.8 μg l−1for MAHs and 0.2-1.5 μg l−1 for PAHs. The novel AMTEOS/PDMS fiber was applied to extract small amount of aromatic compounds in wastewater and river water respectively. The recovery of the method was acceptable for quantitative analysis.  相似文献   

9.
Purge-and-trap gas chromatography-mass spectrometry (PT-GC-MS) has become an accepted method for the analysis of trihalomethanes (THMs) in water. The purge-and-trap technique is based on an efficient transfer of volatile organic compounds from the liquid (contained in the purge chamber) to the gaseous phase by bubbling with an inert gas. The aim of this work was to study the purge system's efficiency by means of several consecutive purge cycles lasting 11 min each of the same liquid sample. The concentration range chosen of THMs was very wide [5-200 μg L−1]. The inert gas flow rate was 40 mL min−1, and experiments were performed at temperatures of 25, 35 and 50 °C. Bromoform (CHBr3), the least volatile compound, needed 19 cycles to be purged quantitatively at a concentration of 200 μg L−1 and only 7 cycles at 5 μg L−1 for a 25 mL sample at 25 °C. Chloroform (CHCl3), the most volatile compound, required 4 cycles to be fully extracted at 200 μg L−1 and 2 at 5 μg L−1. Finally, Novak's theoretical model, based on the distribution constant between gas and liquid phases, was used to correlate the THMs purging extraction data.  相似文献   

10.
This study developed a headspace liquid-phase microextraction (LPME) method by using a single aqueous drop in combination with high performance liquid chromatography (HPLC)-UV detection for the determination of methamphetamine (MAP) and amphetamine (AP) in urine samples. The analytes, volatile and basic, were released from sample matrix into the headspace first, and then protonated and dissolved in an aqueous H3PO4 drop hanging in the headspace by a HPLC syringe. After extraction, this drop was directly injected into HPLC. Parameters affecting extraction efficiency were investigated and optimized. This method showed good linearity in the investigated concentration range of 1.0-1500 μg L−1, repeatability of the extraction (R.S.D. < 5%, n = 6), and low detection limits (0.3 μg L−1 for both analytes). Enrichment factors of about 400-fold and 220-fold were achieved for MAP and AP, respectively, at optimum conditions. The feasibility of the method was demonstrated by analyzing human urine samples.  相似文献   

11.
Hollow fibre liquid-phase microextraction with in situ derivatization using dansyl chloride has been successfully developed for the high-performance liquid chromatography-ultraviolet (HPLC-UV) determination of the biogenic amines (tryptamine, putrescine, cadaverine, histamine, tyramine, spermidine) in food samples. Parameters affecting the performance of the in situ derivatization process such as type of extraction solvent, temperature, extraction time, stirring speed and salt addition were studied and optimized. Under the optimized conditions (extraction solvent, dihexyl ether; acceptor phase, 0.1 M HCl; extraction time, 30 min; extraction temperature, 26 °C; without addition of salt), enrichment factors varying from 47 to 456 were achieved. Good linearity of the analytes was obtained over a concentration range of 0.1–5 μg mL−1 (with correlation coefficients of 0.9901–0.9974). The limits of detection and quantification based on a signal-to-noise ratio of 3–10, ranged from 0.0075 to 0.030 μg mL−1 and 0.03 to 0.10 μg mL−1, respectively. The relative standard deviations based on the peak areas for six replicate analysis of water spiked with 0.5 μg mL−1 of each biogenic amine were lower than 7.5%. The method was successfully applied to shrimp sauce and tomato ketchup samples, offering an interesting alternative to liquid–liquid extraction and solid phase extraction for the analysis of biogenic amines in food samples.  相似文献   

12.
An automated system to perform liquid-liquid extraction is proposed, in which the effective mixture (the intimate contact) between the aqueous phase and the organic phase, as well as the separation of the phases, are carried out in a micro-batch glass extraction chamber. Sample, reagents and organic solvent are introduced into the glass extraction chamber by a peristaltic pump using air as carrier. The detection of the extracted species from the aqueous phase is made in a small volume (120-150 μl) of isobutyl methyl ketone (MIBK). The system allows enrichment factors of 2-10-fold. The proposed automatic system was evaluated for Cu(II) extraction based on complex formation between copper(II) and 1-(2′-pyridylazo)naphthol (PAN) in MIBK. When a volumetric ration of 2:1 (aqueous:organic) was implemented, copper was detected in the concentration range of 100-1600 μg l−1 (r = 0.9995) with a relative standard deviation of 2% (200 μg l−1, n = 5) and a detection limit of 20 μg l−1. The analytical curve was linear over the concentration range 25-500 μg l−1 (r = 0.9994) when a volumetric ratio of 10:1 was employed. With this ratio, the detection limit was 5.0 μg l−1 and the relative standard deviation was 6% (50 μg l−1, n = 5).  相似文献   

13.
It has been developed a fully mechanized procedure for the spectrophotometric determination of anionic surfactants in water expressed in terms of SDS concentration. The reference method, based on the reaction of SDS with methylene blue (MB) followed by extraction in chloroform, was mechanized in order to reduce the consumption of organic solvents. The system was based on the multicommutation approach and provided a 35 times reduction of the waste production without sacrificing the figures of merit of the method in terms of sensitivity and repeatability, for a dynamic linear range from 0.2 to 1.7 mg l−1. Results obtained for washing water samples were comparable with those obtained using the reference method and no significant differences, at 95% confidence level, were observed. Other useful characteristics are a solvent consumption of 0.7 ml per determination, a sampling throughput of 40 determinations per hour, a relative standard deviation of 5.9% (n = 10) for a sample containing 2 × 10−6 mol l−1 (576 μg l−1) surfactant and a limit of detection of 6.1 × 10−9 mol l−1 (1.7 μg l−1).  相似文献   

14.
A simple and fast sample preparation method for the determination of nonylphenol (NP) and octylphenol (OP) in aqueous samples by simultaneous derivatization and dispersive liquid–liquid microextraction (DLLME) was investigated using gas chromatography–mass spectrometry (GC/MS). In this method, a combined dispersant/derivatization catalyst (methanol/pyridine mixture) was firstly added to an aqueous sample, following which a derivatization reagent/extraction solvent (methyl chloroformate/chloroform) was rapidly injected to combine in situ derivatization and extraction in a single step. After centrifuging, the sedimented phase containing the analytes was injected into the GC port by autosampler for analysis. Several parameters, such as extraction solvent, dispersant solvent, amount of derivatization reagent, derivatization and extraction time, pH, and ionic strength were optimized to obtain higher sensitivity for the detection of NP and OP. Under the optimized conditions, good linearity was observed in the range of 0.1–1000 μg L−1 and 0.01–100 μg L−1 with the limits of detection (LOD) of 0.03 μg L−1 and 0.002 μg L−1 for NP and OP, respectively. Water samples collected from the Pearl River were analyzed with the proposed method, the concentrations of NP and OP were found to be 2.40 ± 0.16 μg L−1 and 0.037 ± 0.001 μg L−1, respectively. The relative recoveries of the water samples spiked with different concentrations of NP and OP were in the range of 88.3–106.7%. Compared with SPME and SPE, the proposed method can be successfully applied to the rapid and convenient determination of NP and OP in aqueous samples.  相似文献   

15.
Dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography (HPLC)-UV detection was applied for the extraction and determination of bisphenol A (BPA) in water samples. An appropriate mixture of acetone (disperser solvent) and chloroform (extraction solvent) was injected rapidly into a water sample containing BPA. After extraction, sedimented phase was analyzed by HPLC-UV. Under the optimum conditions (extractant solvent: 142 μL of chloroform, disperser solvent: 2.0 mL of acetone, and without salt addition), the calibration graph was linear in the range of 0.5–100 μg L−1 with the detection limit of 0.07 μg L−1 for BPA. The relative standard deviation (RSD, n = 5) for the extraction and determination of 100 μg L−1 of BPA in the aqueous samples was 6.0%. The results showed that DLLME is a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of BPA in water samples and suitable results were obtained.  相似文献   

16.
Manju Gupta 《Talanta》2007,71(3):1039-1046
The aim of present work was to optimize the experimental parameters in single drop microextraction under solution immersion (SDME) and headspace (HS-SDME) extraction modes for the determination of periodate using guaifenesine [3-(2′-methoxyphenoxy)-1,2-propane diol] and norephedrine (phenylpropanolamine) as new and alternative reagents for the Malaprade reaction. The reactions were complete within 5 min resulting in the formation of 2-(2′-methoxyphenoxy)-acetaldehyde and benzaldehyde, respectively. SDME/HS-SDME of oxidation products with 2 μl of anisole or 1 μl of toluene, respectively, has permitted the determination of periodate at μg l−1 concentration levels. The results indicated that HS-SDME (range 0.01-10 mg l−1, r2 = 0.9990; limit of detection 1.55 μg l−1) was more sensitive than SDME (range 0.05-50 mg l−1, r2 = 0.9984; limit of detection 3.42 μg l−1), and was inexpensive, rapid and convenient. Tolerance of excess of iodate has permitted the application of this method in the determination of ethylene glycol in motor oil; the average recovery on spiked sample was 98.6% with R.S.D. of 4.2%.  相似文献   

17.
Hou JG  Ma Q  Du XZ  Deng HL  Gao JZ 《Talanta》2004,62(2):241-246
Mesoporous materials were employed as fast, sensitive and efficient fiber coatings of solid-phase microextraction (SPME) for the first time. Three micrometer as-synthesized C16-MCM-41 particles were immobilized onto stainless steel wire with 100 μm coating thickness. In combination with high performance liquid chromatography (HPLC), extraction efficiency and selectivity of C16-MCM-41 were investigated using aromatic hydrocarbons. Effect of extraction and desorption time, extraction temperature, stirring rate and ionic strength on extraction efficiency were examined. Aanalytical merits of SPME with C16-MCM-41 coating were evaluated. The chromatographic peak area is proportional to the concentration of anthracene in the range 0.5-150 μg l−1. The limit of detection was 0.05 μg l−1 (S/N=3) and the relative standard deviation (R.S.D.) was 0.033%.  相似文献   

18.
A headspace single-drop microextraction (HS-SDME) procedure using room temperature ionic liquid and coupled to high-performance liquid chromatography capable of quantifying trace amounts of chlorobenzenes in environmental water samples is proposed. A Plackett-Burman design for screening was carried out in order to determine the significant experimental conditions affecting the HS-SDME process (namely drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time and temperature), and then a central composite design was used to optimize the significant conditions. The optimum experimental conditions found from this statistical evaluation were: a 5 μL microdrop of 1-butyl-3-methylimidazolium hexafluorophosphate, exposed for 37 min to the headspace of a 10 mL aqueous sample placed in a 15 mL vial, stirred at 1580 rpm at room temperature and containing 30% (w/v) NaCl. The calculated calibration curves gave a high level of linearity for all target analytes with correlation coefficients ranging between 0.9981 and 0.9997. The repeatability of the proposed method, expressed as relative standard deviation, varied between 1.6 and 5.1% (n = 5). The limits of detection ranged between 0.102 and 0.203 μg L−1. Matrix effects upon extraction were evaluated by analysing spiked tap and river water as well as effluent water samples originating from a municipal wastewater treatment plant.  相似文献   

19.
A new chelating resin based on chitosan biopolymer modified with 5-sulphonic acid 8-hydroxyquinoline using the spray drying technique for immobilization is proposed. The chelating resin was characterized by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and surface area by nitrogen sorption. The efficiency of the chelating resin was evaluated by the preconcentration of metal ions Cu(II) and Cd(II) present in aqueous samples in trace amounts. The metal ions were previously enriched in a minicolumn and the concentrations of the analytes were determined on-line by flame atomic absorption spectrometry (FAAS). The maximum retention for Cu(II) occurred in the pH range 8-10, and for Cd(II) at pH 7. The optimum flow rate for sorption was found to be 7.2 ml min−1 for the preconcentration of the metal ions. The analytes gave relative standard deviations (R.S.D.) of 0.7 and 0.6% for solutions containing 20 μg l−1 of Cu(II) and 15 μg l−1 of Cd (II), respectively (n=7). The enrichment factors for Cu(II) and Cd (II) were 19.1 and 13.9, respectively, and the limits of detection (LOD) were 0.2 μg l−1 for Cd(II) and 0.3 μg l−1 for Cu(II), using a preconcentration time of 90 s (n=11). The accuracy of the proposed method was evaluated by the metal ion recovery technique, in the analysis of potable water and water from a lake, with recoveries being between 97.2 and 107.3%.  相似文献   

20.
A continuous flow liquid membrane extraction (CFLME)-C18 precolumn-liquid chromatography system was developed for preconcentration and determination of chlorinated phenols (CPs). After preconcentration by CFLME, which is based on the combination of continuous flow liquid-liquid extraction and supported liquid membrane, CPs were enriched in 960 μl of 0.5 mol l−1 NaOH used as acceptor. This acceptor was on-line neutralized and transported onto the C18 precolumn where analytes were absorbed and focused. Then the focused analytes were injected onto the C18 analytical column for separation and detected at 215 nm with a diode array detector. CFLME related parameters such as flow rates, pH of donor and acceptor concentration were optimized. The proposed method presents detection limits of 0.02-0.09 μg l−1 (S/N=3) when 100 ml samples were enriched. The proposed method was successfully applied to determine CPs in tap water and river water samples with spiked recoveries in the range of 70-121%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号