共查询到20条相似文献,搜索用时 15 毫秒
1.
A single-wall carbon nanotubes (SWNT)-Nafion film coated glassy carbon electrode (GCE) was described for the determination of 4-aminophenol. In pH 3.0 sodium citrate-HCl buffer, the oxidation peak current of 4-aminophenol increases greatly at the SWNT-Nafion film coated GCE in contrast to that at both bare GCE and Nafion-film coated GCE. Moreover, the oxidation peak potential shifts to more negative potential. All the experimental parameters were optimized for the determination of 4-aminophenol. The oxidation peak current is proportional to the concentration of 4-aminophenol over the range from 5×10−9 to 2×10−6 mol l−1. The detection limit is 8×10−10 mol l−1 at 4 min of accumulation. Using the proposed method, 4-aminophenol in water samples was determined. 相似文献
2.
A simple and rapid electrochemical method is developed for the determination of trace-level norfloxacin, based on the excellent properties of multi-walled carbon nanotubes (MWCNTs). The MWCNTs/Nafion film-coated glassy carbon electrode (GCE) is constructed and the electrochemical behavior of norfloxacin at the electrode is investigated in detail. The results indicate that MWCNTs modified glassy carbon electrode exhibited efficiently electrocatalytic oxidation for norfloxacin (NFX) with relatively high sensitivity, stability and life time. Under conditions of cyclic voltammetry, the current for oxidation of selected analyte is enhanced significantly in comparison to the bare GCE. The electrocatalytic behavior is further exploited as a sensitive detection scheme for the analyte determinations by linear sweep voltammetry (LSV). Under optimized condition in voltammetric method the concentration calibration range and detection limit (S/N=3) are 0.1-100 micromol/L and 5 x 10(-8)mol/L for NFX. The proposed method was successfully applied to NFX determination in tablets. The analytical performance of this sensor has been evaluated for detection of the analyte in urine as a real sample. 相似文献
3.
Anodic stripping voltammetric determination of mercury using multi-walled carbon nanotubes film coated glassy carbon electrode 总被引:1,自引:0,他引:1
Yi H 《Analytical and bioanalytical chemistry》2003,377(4):770-774
An electrochemical method for the determination of trace levels of mercury based on a multi-walled carbon nanotubes (MWNT) film coated glassy carbon electrode (GCE) is described. In 0.1 mol L–1 HCl solution containing 0.02 mol L–1 KI, Hg2+ was firstly preconcentrated at the MWNT film and then reduced at –0.60 V. During the anodic potential sweep, reduced mercury was oxidized, and then a sensitive and well-defined stripping peak at about –0.20 V appeared. Under identical conditions, a MWNT film coated GCE greatly enhances the stripping peak current of mercury in contrast to a bare GCE. Low concentrations of I– remarkably improve the determining sensitivity, since this increases the accumulation efficiency of Hg2+ at the MWNT film coated GCE. The stripping peak current is proportional to the concentration of Hg2+ over the range 8×10–10–5×10–7 mol L–1. The lowest detectable concentration of Hg2+ is 2×10–10 mol L–1 at 5 min accumulation. The relative standard deviation (RSD) at 1×10–8 mol L–1 Hg2+ was about 6% (n=10). By using this proposed method, Hg2+ in some water samples was determined, and the results were compared with those obtained by atomic absorption spectrometry (AAS). The two results are similar, suggesting that the MWNT-film coated GCE has great potential in practical analysis. 相似文献
4.
The electrochemistry of xanthinol nicotinate(Xan) was studied by cyclic voltammetry at a glassy carbon electrode modified by a gel containing multi-walled carbon nanotubes(MWNTs) and room-temperature ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate(BMTMPF_6).The modified electrode exhibited good promotion to the electrochemical oxidation of Xan and an ultrasensitive electrochemical method was proposed for the determination of Xan.This method was successfully applied to the determination of... 相似文献
5.
Ke-Jing Huang Chun-Xuan Xu Wan-Zhen Xie Wei Wang 《Colloids and surfaces. B, Biointerfaces》2009,74(1):167-171
Herein, a novel electrochemical method was developed for the determination of tryptophan based on the poly(4-aminobenzoic acid) film modified glassy carbon electrode (GCE). The electrochemical behaviors of tryptophan at the modified electrode were investigated. It was found that the oxidation peak current of tryptophan at the modified GCE was greatly improved compared with that at the bare GCE. The effects of supporting electrolyte, pH value, scan rate, accumulation potential and time were examined. The oxidation peak current of tryptophan was proportional to its concentration over the range from 1.0 × 10−6 to 1.0 × 10−4 mol L−1. The limit of detection was evaluated to be 2.0 × 10−7 mol L−1. The proposed method was sensitive and simple. It was successfully employed to determine tryptophan in pharmaceutical samples. 相似文献
6.
Yingliang Wei Qing Zhang Chen Shao Chao Li Luping Zhang Xianli Li 《Journal of Analytical Chemistry》2010,65(4):398-403
A rapid and convenient electrochemical method is described for the determination of salbutamol based on multi-carbon nanotubes
(MWNT) film coated glassy carbon electrode (GCE). The electrochemical behavior of salbutamol at this modified electrode was studied by square wave voltammetry, which indicated
that the oxidation peak potential of salbutamol shifted on 40 mV to less positive potential and the peak current increased
4.5 fold, in contrast to that at a bare electrode. Various experimental parameters such as pH value of supporting electrolyte,
the amount of modifier, and accumulation time were optimized. Under optimal measurement conditions, there is a good linear
relationship between the peak current (I
pa) and salbutamol concentration in the range from 8.0 × 10−7 to 1.0 × 10−5 M, and the detection limit is 2.0 × 10−7 M (S/N = 3) at 2 min accumulation. The method has been successfully employed to detect salbutamol in pharmaceutical formulations. 相似文献
7.
Rajesh N. Hegde 《Talanta》2009,79(2):361-368
A simple and rapid electrochemical method was developed for the determination of trace-level trazodone, based on the excellent properties of multi-walled carbon nanotubes (MWCNTs). The MWCNT-modified glassy carbon electrode was constructed and the electrochemical behavior of trazodone was investigated in detail. The cyclic voltammetric results indicate that MWCNT-modified glassy carbon electrode can remarkably enhance electrocatalytic activity towards the oxidation of trazodone in neutral solutions. It leads to a considerable improvement of the anodic peak current for trazodone, and allows the development of a highly sensitive voltammetric sensor for the determination of trazodone. Trazodone could effectively accumulate at this electrode and produce two anodic peaks at about 0.73 V and 1.00 V. The electrocatalytic behavior was further exploited as a sensitive detection scheme for the trazodone determination by differential-pulse voltammetry. Under optimized conditions, the concentration range and detection limit are 0.2-10 μM and 24 nM, respectively for trazodone. The proposed method was successfully applied to trazodone determination in pharmaceutical samples. The analytical performance of this sensor has been evaluated for detection of analyte in urine as a real sample. 相似文献
8.
A chemically modified electrode is constructed based on the multi-walled carbon nanotubes (MWNTs)/4-aminobenzeresulfonic acid (4-ABSA) film-coated glassy carbon electrode. The electrocatalytic oxidation of tyrosine (Tyr) is investigated on the surface of the MWNTs/4-ABSA-modified electrode using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The prepared modified electrode shows voltammetric responses with high sensitivity and selectivity for Tyr in optimal conditions, which makes it very suitable for sub-micromolar detection of Tyr. A sensitive oxidation peak at +0.64 V is employed to determine Tyr. Good linear relationship between the oxidation peak current and the Tyr concentration in the range of 1 × 10−7 to 5 × 10−5 mol/L is obtained in phosphate buffer solution with pH 7.0. By use of modified electrode, the voltammetric detection limit for Tyr in DPV measurements is 8 × 10−8 mol/L (S/N = 3). Good sensitivity, selectivity and stability of the low-cost modified electrode make it very suitable for the determination of trace amounts of Tyr in pharmaceutical and clinical preparations. 相似文献
9.
The electrochemistry of metronidazole, 1-(hydroxyethyl)-2-methyl-5-nitroimidazole, was investigated at a carbon fiber microdisk electrode in pH 9 Britton Robinson buffer. Under these conditions, the reduction of metronidazole is controlled by both mass transport to the microdisk and adsorption with an equilibrium constant of 4 × 103 mol−1 dm3 and a saturation coverage of 0.88 × 10−8 mol cm−2. The adsorption and accumulation of metronidazole on the surface of the carbon fiber allows its determination at low concentrations by square wave adsorptive stripping voltammetry. A detection limit for metronidazole of 5 × 10−7 mol dm−3 and a R.S.D. of 3.7% at 1 × 10−6 mol dm−3 (n = 4) were obtained with a two electrode system with no stirring during the accumulation step. Based on this method, a simple procedure for the determination of metronidazole in urine is described which requires no pre-treatment of the sample before analysis. 相似文献
10.
11.
12.
Single-wall carbon nanotubes (SWNT) were dispersed into water in the presence of dicetyl phosphate (DCP), and then a SWNT-DCP
film-coated glassy carbon electrode (GCE) was constructed. The electrochemical behavior of acetaminophen at bare GCE and SWNT-DCP
modified GCE were compared, suggesting that the SWNT-DCP-modified GCE significantly enhances the oxidation peak current of
acetaminophen. A sensitive and simple electrochemical method with a good linear relationship in the range of 1.0 × 10−7–2.0 × 10−5 mol L−1, was developed for the determination of acetaminophen. The detection limit is 4.0 × 10−8 mol L−1 for 3-min accumulation. This method was successfully demonstrated with tablets. 相似文献
13.
采用循环伏安法和线性扫描伏安法对没食子酸在电活化玻碳电极上的电化学行为进行了研究。玻碳电极在pH7.0的磷酸盐缓冲溶液中,用恒电位法在1.7 V电位阳极氧化400 s。然后在pH3.0的柠檬酸盐缓冲溶液中,没食子酸在0.479 V和0.442 V处有一良好的氧化还原峰,在0.02~0.40 V s-1范围内,其氧化峰电流与扫描速率呈良好线性关系,表明电极过程为受吸附控制的准可逆过程。线性循环伏安法的氧化峰电流与没食子酸浓度1×10-6~1×10-4mol L-1范围内呈良好的线性关系(r=0.980 6),检出限为7.6×10-7mol L-1(S/N=3)。该方法操作简便,重现性较好,并应用此法分析了健民咽喉片剂中的没食子酸的含量。 相似文献
14.
Shaofang Lü 《Microchemical Journal》2004,77(1):37-42
A novel carbon nanotubes modified glassy carbon electrode was simply and conveniently fabricated. The electrochemical properties of 8-azaguanine at a carbon nanotubes modified electrode were investigated by cyclic voltammetry, and an anodic peak was observed at approximately 0.86 V (vs. SCE). Based on this, an ultrasensitive electrochemical method was proposed for the determination of 8-azaguanine. The oxidation peak current is linear to the concentration of 8-azaguanine over the range from 2.5×10−8 to 1.0×10−5 M, and the limit of detection is 1.0×10−8 M at 2 min open-circuit accumulation. The relative standard deviation at 2.0×10−7 M 8-azaguanine was approximately 5.3% (n=10). The analysis method is demonstrated by using human urine samples obtained from cancer patients following intravenous administration of 8-azaguanine. 相似文献
15.
The electrochemical behavior of paracetamol in 0.1 M acetate buffer solution (pH 4.6) was investigated at a traditional carbon
paste electrode (TCPE) and a carbon ionic liquid electrode (CILE) fabricated by replacing nonconductive organic binders with
a conductive hydrophobic room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6). The results showed that the CILE exhibited better reversibility for the electrochemical redox of paracetamol. The oxidation
potential of paracetamol at the CILE is +0.462 V, which is approximately 232 mV lower than that at the TCPE; the oxidation
peak current response is nine times higher than that at the TCPE. The differential pulse voltammetric determination of paracetamol
at the CILE was established based on this behavior. After optimizing several important parameters controlling the performance
of paracetamol at the CILE, the oxidation peak current versus paracetamol concentration at the CILE showed linearity in the
range from 1.0 μM to 2.0 mM (R
2
= 0.9992) with a detection limit of 0.3 μM (S/N = 3). The method has been applied to the determination of paracetamol in
tablets and urine samples and the average recovery of paracetamol was 98.5% and 99.3%, respectively. The proposed CILE showed
good sensitivity and reproducible response without influence of interferents commonly existing in pharmaceutical and urine
samples.
Figure CV curves of paracetamol illustrate the enhanced electrochemical behavior of paracetamol at the CILE (b), which forms the basis for the differential pulse voltammetric determination of paracetamol 相似文献
16.
The voltammetric behavior of tannic acid (TA) on a single-wall carbon nanotubes (SWNTs) modified glassy carbon electrode has
been investigated by cyclic voltammetry. TA can generate a well-defined anodic peak on the modified electrode at around 0.42 V
(vs. SCE) in 0.10 M phosphate buffer solutions (pH = 4.0). The electrochemical reaction involves 1e transfer, accompanied
by one proton. The electrode process is controlled by adsorption. The parameters affecting the response of TA, such as solution
pH, accumulation time and accumulation potential are optimized for the determination of TA. Under the optimum conditions,
the peak current changes linearly with the TA concentration in the range of 5.0 × 10−8–1.0 × 10−6 M. The lowest detectable concentration of TA is 8.0 × 10−9 M after 180 s accumulation. This method has been successfully applied to the determination of TA in tea and beer samples.
In addition, the influence of potential interferents is examined. In the presence of bovine serum albumin, the peak current
of TA decreases linearly due to the formation of a super-molecular complex. 相似文献
17.
18.
Novel nano-silver coated multi-walled carbon nanotube composites were prepared and used to fabricate a modified electrode. The application of the nano-silver coated multi-walled carbon nanotube composites modified electrode for determination of trace thiocyanate is demonstrated for the first time. The influence of substrate, pH and interference of coexisting substances was investigated for response properties of the electrode. There was a linear relationship at the range 2.5 × 10−9 to 5 × 10−8 mol L−1 and 5 × 10−8 to 1 × 10−6 mol L−1 of thiocyanate with the decrement of anodic DPV peak currents. The limit of detection was 1 × 10−9 mol L−1(S/N = 3). The constructed electrode showed excellent reproducibility and stability. Actual urine and saliva samples of smoker and non-smoker were analyzed and satisfactory results were obtained. This method provides a new way to construct any electrode for biological and environmental analysis. 相似文献
19.
研究了苦参碱(Matrine, MT) 在多壁碳纳米管修饰玻碳电极(MWCNT/GCE)上的电化学行为. 与GCE相比, MT在MWCNT/GCE上峰电位负移120 mV, 峰电流增大约2.5倍, 表明MWCNT/GCE对MT的电化学氧化具有良好的催化作用. 同时测定并计算了MT在MWCNT/GCE上的电极过程动力学参数: 电子转移系数α、电极反应速率常数ks、扩散系数D. 运用差分脉冲伏安法对苦参碱样品含量进行测定, 相对标准偏差为0.12%~2.9%, 加标回收率为98.4%~99.0%. 该方法可用于MT的电化学定量测定. 相似文献
20.
黄芩甙在玻碳电极上的电化学行为及其应用 总被引:1,自引:0,他引:1
用线性扫描伏安法(LSV)、循环伏安法(CV)和常规脉冲伏安法(NPV)等多种电化学方法研究了黄芩甙在玻碳电极上的电化学行为,并建立了尿样和血清样品中黄芩甙的微分脉冲伏安(DPV)测定法。实验结果表明:黄芩甙在玻碳电极上的吸附符合Frumkin吸附等温式,吸附自由能为-35.01kJ mol。采用整体电解法求得电极反应电子数为2,并结合Nernst方程式推导了反应机理。黄芩甙在玻碳电极上预富集后,在4.20×10-10~1.05×10-5mol L范围内分段呈线性关系,对5.60×10-7mol L黄芩甙溶液连续6次测定的RSD=2.0%,检出限为2.8×10-10mol L。 相似文献