首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, methodologies were developed to determine aluminum (Al), cadmium chromium and lead in drinking water by electrothermal atomic absorption spectrometry using permanent modifiers. No use of modifier, iridium, ruthenium, rhodium and zirconium (independently, 500 μg) were tested to each one analyte through the pyrolysis and atomization temperatures curves. As the matrix is very simple, did not had occurred problems with the background for all metals. The best results obtained for cadmium and chromium was with the use of rhodium permanent modifier. For lead and aluminum, the best choice was the use of zirconium. The selection for the modifier took into account the sensitivity, form of the absorption pulse and low atomization temperature (what contributes to elevate the useful life of the graphite tube). For aluminum using zirconium permanent, the best pyrolysis and atomization temperatures were respectively, of 1000 and 2500 °C with a characteristic mass (1% of absorbance, mo) of 19 pg (recommended of 20 pg). For cadmium, with use of rhodium the best temperatures for the pyrolysis and atomization were respectively of 400 and 1100 °C, with a symmetrical peak and with a mo of 1.0 pg (recommended of 1.0 pg). For chromium with rhodium permanent, the best temperatures for pyrolysis and atomization were respectively of 1000 and 2200 °C, with symmetrical peak and mo of 5.3 pg (recommended of 5.5 pg). For lead with zirconium permanent, the best temperatures for pyrolysis and atomization were of 700 and 2400 °C, with symmetrical peak and with mo of 30 pg (recommended of 20 pg). Water samples spiked with each one of the metals in four different levels inside of the acceptable values presented recoveries always close to 100%. The detection limits were of 0.1 μg l−1 for cadmium; 0.2 μg l−1 for chromium; 0.5 μg l−1 for lead and 1.4 μg l−1 for aluminum.  相似文献   

2.
Hsiang MC  Sung YH  Huang SD 《Talanta》2004,62(4):791-799
A simple method was developed for the direct and simultaneous determination of arsenic (As), manganese (Mn), cobalt (Co), and nickel (Ni) in urine by a multi-element graphite furnace atomic absorption spectrometer (Perkin-Elmer SIMAA 6000) equipped with the transversely heated graphite atomizer and longitudinal Zeeman-effect background correction. Pd was used as the chemical modifier along with either the internal furnace gas or a internal furnace gas containing hydrogen and a double stage pyrolysis process. A standard reference material (SRM) of Seronorm™ Trace Elements in urine was used to confirm the accuracy of the method. The optimum conditions for the analysis of urine samples are pyrolysis at 1350 °C (using 5% H2 v/v in Ar as the inter furnace gas during the first pyrolysis stage and pure Ar during the second pyrolysis stage) and atomization at 2100 °C. The use of Ar and matrix-free standards resulted in concentrations for all the analytes within 85% (As) to 110% (Ni) of the certified values. The recovery for As was improved when mixture of 5% H2 and 95% Ar (v/v) internal furnace gas was applied during the first step of a two-stage pyrolysis at 1350 °C, and the found values of the analytes were within 91-110% of the certified value. The recoveries for real urine samples were in the range 88-95% for these four elements. The detection limits were 0.78 μg l−1 for As, 0.054 μg l−1 for Mn, 0.22 μg l−1 for Co, and 0.35 μg l−1 for Ni. The upper limits of the linear calibration curve are 60 μg l−1 (As); 12 μg l−1 (Mn); 12 μg l−1 (Co) and 25 μg l−1 (Ni), respectively. The relative standard deviations (R.S.D.s) for the analysis of SRM were 2% or less. The R.S.D.s of a real urine sample are 1.6% (As), 6.3% (Mn), 7.0% (Ni) and 8.0% (Co), respectively.  相似文献   

3.
The determination of cadmium (Cd) in fertilizers is of major interest, as this element can cause growth problems in plants, and also affect animals and humans. High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with charge-coupled device (CCD) array detection overcomes several of the limitations encountered with conventional line source AAS, especially the problem of accurate background measurement and correction. In this work an analytical method has been developed to determine Cd in fertilizer samples by HR-CS GF AAS using slurry sampling. Both a mixture of 10 μg Pd + 6 μg Mg in solution and 400 μg of iridium as permanent modifier have been investigated and aqueous standards were used for calibration. Pyrolysis and atomization temperatures were 600 °C and 1600 °C for the Pd-Mg modifier, and 500 °C and 1600 °C for Ir, respectively. The results obtained for Cd in the certified reference material NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer) of 16.7 ± 1.3 μg g−1 and 16.4 ± 0.75 μg g−1 for the Pd-Mg and Ir modifier, respectively, were statistically not different from the certified value of 16.9 ± 0.2 μg g−1 on a 95% confidence level; however, the results obtained with the Ir modifier were significantly lower than those for the Pd-Mg modifier for most of the samples. The characteristic mass was 1.0 pg for the Pd-Mg modifier and 1.1 pg Cd for the Ir modifier, and the correlation coefficients (R2) of the calibration were > 0.99. The instrumental limits of detection were 7.5 and 7.9 ng g−1, and the limits of quantification were 25 and 27 ng g−1 for Pd-Mg and Ir, respectively, based on a sample mass of 5 mg. The cadmium concentration in the investigated samples was between 0.07 and 5.5 μg g−1 Cd, and hence below the maximum value of 20 μg g−1 Cd permitted by Brazilian legislation.  相似文献   

4.
A three-phase liquid microextraction procedure for the determination of mercury at low concentrations is discussed. To the aqueous sample placed at pH 7 by means of a phosphate buffer, 0.002% (m/v) 1-(2-pyridylazo)-2-naphthol (PAN) is incorporated, and the mixture submitted to microextraction with a hollow-fiber impregnated with toluene and whose lumen contains a 0.05 mol L−1 ammonium iodide solution. The final measurement of the extract is carried out by electrothermal atomic absorption spectrometry (300 °C and 1100 °C for the calcination and atomization temperatures, respectively). The pyrolytic graphite atomizer is coated electrolytically with palladium. An enrichment factor of 270, which results in a 0.06 μg L−1 mercury for the detection limit is obtained. The relative standard deviation at the 1 μg L−1 mercury level is 3.2% (n = 5). The reliability of the procedure is verified by analyzing waters as well as six certified reference materials.  相似文献   

5.
A new flow injection (FIA) procedure for the preconcentration of cadmium in urine using multiwalled carbon nanotubes (MWCNT) as sorbent and posterior electrothermal atomization atomic absorption spectrometry (ETA-AAS) Cd determination has been developed. Cadmium was retained in a column filled with previously oxidized MWCNTs and it was quantitatively eluted with a nitric acid solution. The parameters influencing the adsorption-elution process such as pH of the sample solution, amount of sorbent and flow rates of sample as well as eluent solutions have been studied. Cd concentration in the eluent was measured by ETA-AAS under the optimized conditions obtained. The results indicated the elimination of urine matrix effect as a consequence of the preconcentration process performed. Total recovery of cadmium from urine at pH 7.2 using a column with 45 mg of MWCNTs as sorbent and employing a HNO3 0.5 mol L−1 solution for elution was attained. The detection limit obtained was 0.010 μg L−1 and the preconcentration factor achieved was 3.4. The method showed adequate precision (RSD: 3.4-9.8%) and accuracy (mean recovery: 97.4-100%). The developed method was applied for the determination of cadmium in real urine samples from healthy people (in the range of 0.14-2.94 μg L−1) with satisfactory results.  相似文献   

6.
Correia PR  Oliveira PV 《Talanta》2005,67(1):46-53
The effectiveness of internal standardization for simultaneous atomic absorption spectrometry (SIMAAS) was investigated for As and Se determination in urine. Co and Sn were selected as internal standard (IS) candidates based on the evaluation of some physico-chemical parameters related to the atomization. Correlation graphs, plotted from the normalized absorbance signals (n = 20) of internal standard (axis y) versus analyte (axis x), precision, and accuracy of the analytical results were the supportive parameters to choose Co as the most appropriate IS. The urine samples were diluted 1 + 2 to 1.0% (v/v) HNO3 + 80 μg L−1 Co2+. The mixture 20 μg Pd + 3 μg Mg was used as chemical modifier and the optimized temperatures for pyrolysis and atomization steps were 1400 and 2300 °C, respectively. The characteristic masses for As (47 ± 1 pg) and Se (72 ± 2 pg) were estimated from the analytical curves. The detection limits (n = 20, 3δ) were 1.8 ± 0.1 and 2.6 ± 0.1 μg L−1 for As and Se, respectively. The reliability of the entire procedure was checked with the analysis of certified reference material from Sero AS(Seronorm™ Trace Elements in Urine). The obtained results showed the matrix interference disallowed the instrument calibration with aqueous standards. The best analytical condition was achieved when matrix-matched standards were used in combination with Co as IS, which improved the recoveries obtained for As. Under this experimental condition, eight urine samples were analysed and spiked with 10 and 25 μg L−1 As and Se. The mean recoveries were 96 ± 6% (10 μg L−1 As), 95 ± 6% (25 μg L−1 As), 101 ± 7% (10 μg L−1 Se), and 97 ± 4% (25 μg L−1 Se).  相似文献   

7.
Zhang L  Ishi D  Shitou K  Morita Y  Isozaki A 《Talanta》2005,68(2):336-342
A simple and rapid method for simultaneous determination of As, Se and Sb was studied by graphite furnace atomic absorption spectrometry (GFAAS). Titanium dioxide adsorbing As, Se and Sb was separated from sample solution (100 ml) with a membrane filtration (0.45 μm), and then prepared to be slurry (5.0 ml) by adding ultrapure water. The behavior and influence of titanium dioxide on determination of As, Se and Sb were investigated in this experiment. The optimal conditions of a furnace for these elements were chosen as follows: pyrolysis temperature was 150 °C, and atomization temperature was 2300 °C. The optimal conditions of adsorption for As, Se and Sb on titanium dioxide were listed: pH 2.0 in sample solution; 10 min of stirring time; and 20.0 mg titanium dioxide. The difference of the chemical valence of each element had no effect on the recovery of each element at the same optimal conditions. Limits of detection (3σ) for As, Se and Sb were found to be 0.21 μg l−1, 0.15 μg l−1 and 0.15 μg l−1, respectively, with enrichment rate of 20, when 20 μl of slurry was injected into a Zr-coating tube. The proposed method was applied to tap water and river water.  相似文献   

8.
Pedro R. Aranda 《Talanta》2008,77(2):663-666
Cloud point extraction (CPE) has been used for the preconcentration of cadmium, after the formation of a complex with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP), and further determination by graphite furnace atomic absorption spectrometry (ETAAS) using polyethyleneglicolmono-p-nonyphenylether (PONPE 7.5) as surfactant. The chemical variables that affect the cloud point extraction were optimized. The separation of the two phases was easily accomplished by cooling the mixture in order to make more viscous the surfactant-rich phase. In order to establish the optimum conditions for the determination of Cd by ETAAS, Pd + Mg, Pt, Ir, Rh and Ru were studied as chemical modifiers. The best thermal stabilization was obtained with Pd + Mg, with a maximum pyrolysis temperature of 1100 °C. Under the optimum conditions i.e., pH 9.0, [5-Br-PADAP] = 2.0 × 10−5 mol L−1, [PONPE 7.5] = 0.02% (w/v), an enhancement factor of 22-fold was reached. The lower limit of detection (LOD) obtained under the optimal conditions was 0.008 μg L−1. The precision for 10 replicate determinations at 0.2 μg L−1 Cd was 3.5% relative standard deviation (R.S.D.). The calibration graph using the preconcentration method was linear with a correlation coefficient of 0.9984 at levels close to the detection limit up to at least 1.0 μg L−1. The method was successfully applied to the determination of cadmium in urine samples and in a water standard reference material.  相似文献   

9.
In the present study, cadmium and lead in the muscle, lung, liver and kidney of dolphins (Sotalia guianensis and Stenella clymene) of the Bahia coast in the northwest of Brazil were determined by graphite furnace atomic absorption spectrometry. Samples were digested using a diluted oxidant mixture (HNO3 + H2O2) with a microwave heating program performed in five steps. The optimized temperatures and chemical modifier for the pyrolysis and atomization were 700 °C, 1400 °C and Pd plus Mg for Cd, and 900 °C, 1800 °C and NH4H2PO4 for Pb, respectively. Characteristic masses and limits of detections (n = 20, 3σ) for Cd and Pb were 1.6 and 9.0 pg and 0.82 ng g− 1 and 0.50 ng g− 1, respectively. Repeatability ranged from 0.87 to 8.22% for Cd and 4.31 to 8.09% for Pb. The found concentrations presented no statistical differences at the 95% confidence level when compared with the ICP OES methods. Addition and recovery tests were also performed and the results ranged between 87 and 112% for both elements. Samples of cetacean Dolphinidae (S.guianensis and S.clymene) were analyzed, and the higher concentrations ranged from 0.09 to 46.2 µg g− 1 for Cd and 0.04 to 0.47 µg g− 1 for Pb in liver, and from 0.133 to 277 µg g− 1 for Cd in the kidney.  相似文献   

10.
Electrothermal atomization of beryllium from graphite and tungsten surfaces was compared with and without the use of various chemical modifiers. Tungsten proved to be the best substrate, giving the more sensitive integrated atomic absorption signals of beryllium. Tungsten platform atomization with zirconium as a chemical modifier was used for the determination of beryllium in several NIST SRM certified reference samples, with good agreement obtained between the results found and the certified values. The precision of the measurements (at 10 μg L−1), the limit of detection (3σ), and the characteristic mass of beryllium were 2.50%, 0.009 μg L−1 and 0.42 pg, respectively.  相似文献   

11.
The direct determination of P in biodiesel by high-resolution continuum source graphite furnace atomic absorption spectrometry has been investigated. A slow drying stage proved to be essential for good repeatability. Optimization was performed by a D optimal planning. The atomization temperature and modifier composition were the most relevant parameters. Thus, using a mixture of Pd (30 μg) and Mg(NO3)2 (20 μg) as the modifier, previously deposited onto the platform of the graphite tube and dried, a five step drying stage, and pyrolysis and atomization temperatures of 1000 and 2700 °C, respectively, a limit of detection of 0.5 μg g− 1 was obtained. The analysis of biodiesel of different origins confirmed that external calibration with organic P standard solutions, diluted in P-free biodiesel, could be used. In this way, excellent agreement between the found and expected results was observed in the analysis of an ANP interlaboratorial exercise sample.  相似文献   

12.
This work exploited a sequential injection lab-on-valve (LOV) system for the determination of cadmium by anodic stripping voltammetry (ASV). A miniaturized electrochemical flow cell (EFC) was fabricated in LOV, in which a nafion coated bismuth film electrode was used as working electrode. The cadmium was electrodeposited on the electrode surface in bismuth solution, and measured with the subsequential stripping scan. Under optimal conditions, the proposed system responded linearly to cadmium concentrations in a range 2.0-100.0 μg L−1. The detection limit of this method was found to be 0.88 μg L−1. By loading a sample volume of 800 μL, a sampling frequency of 22 determinations h−1 was achieved. The repeatability expressed as relative standard derivation (R.S.D.) was 3.65% for 20 μg L−1 cadmium (n = 11). The established method was applied to analysis of trace cadmium in environmental water samples and the spiked recoveries were satisfactory.  相似文献   

13.
Cadmium and iron are antagonistic elements in the sense that they produce different effects in the human body. Both elements have to be determined routinely in grain products, cadmium because of its toxicity, and iron because all grain products, according to Brazilian law, have to contain a minimum of 42 mg kg−1 Fe to combat anemia. A routine screening method has been developed for the quasi simultaneous determination of cadmium and iron using high-resolution continuum source electrothermal atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for Cd, and an adjacent secondary line at 228.726 nm for the determination of Fe. Various chemical modifiers have been investigated, and a mixture of tungsten and iridium, applied as a permanent modifier, showed the best performance; it stabilized Cd up to a pyrolysis temperature of 700 °C and did not over-stabilize Fe. Two atomization temperatures were used sequentially, 1700 °C for Cd and 2600 °C for Fe, because of their significantly different volatilities. The characteristic masses obtained were 0.9 pg for Cd and 1.2 ng for Fe. The limits of detection (3σ, n = 10) were 0.6 μg kg−1 for Cd and 0.5 mg kg−1 for Fe. The relative standard deviation ranged from 3 to 7% for Cd and from 4 to 13% for Fe, which is satisfactory for the purpose. The accuracy of the method was confirmed by the analysis of three certified reference materials; the results were in agreement with the certified values at a 95% confidence interval. The Cd content in the investigated grain products was between 0.9 and 10.5 μg kg−1, but most of them did not contain the required minimum amount of iron.  相似文献   

14.
A novel on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system coupled to electrothermal atomic absorption spectrometry (ETAAS) was developed for metal preconcentration in micro-scale, eliminating the laborious and time consuming procedure of phase separation with centrifugation. The potentials of the system were demonstrated for trace lead and cadmium determination in water samples. An appropriate disperser solution which contains the extraction solvent (xylene) and the chelating agent (ammonium pyrrolidine dithiocarbamate) in methanol is mixed on-line with the sample solution (aqueous phase), resulting thus, a cloudy solution, which is consisted of fine droplets of xylene, dispersed throughout the aqueous phase. Three procedures are taking place simultaneously: cloudy solution creation, analyte complex formation and extraction from aqueous phase into the fine droplets of xylene. Subsequently the droplets were retained on the hydrophobic surface of PTFE-turnings into the column. A part of 30 μL of the eluent (methyl isobutyl ketone) was injected into furnace graphite for analyte atomization and quantification. The sampling frequency was 10 h−1, and the obtained enrichment factor was 80 for lead and 34 for cadmium. The detection limit was 10 ng L−1 and 2 ng L−1, while the precision expressed as relative standard deviation (RSD) was 3.8% (at 0.5 μg L−1) and 4.1% (at 0.03 μg L−1) for lead and cadmium respectively. The proposed method was evaluated by analyzing certified reference materials and was applied to the analysis of natural waters.  相似文献   

15.
A simple, sensitive and inexpensive flow injection solid phase extraction (SPE) system was developed for automatic determination of trace level concentrations of metals. The potentials of this novel scheme, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace cadmium and lead determination in environmental water samples. The method was based on on-line chelate complex formation of target species with ammonium diethyldithiophosphate (DDTP), retention onto the surface of reversed-phase poly(divinylbenzene-N-vinylpyrrolidone) co-polymeric beads (Oasis HLB) and elution with methanol prior to atomization. A special PVC adapter was designed for easy and rapid replacement of the commercially available SPE cartridge. All main chemical and hydrodynamic parameters affecting the complex formation, sorption and elution of the analyte were optimized thoroughly. Moreover, the effect of potential interfering species occurring in environmental samples was also explored.For 90 s preconcentration time, enhancement factors of 155 and 180, detection limits (3s) of 0.09 μg L− 1 and 0.9 μg L− 1 and relative standard deviations (R.S.D.) of 2.9% (at 4.0 μg L− 1) and 2.6% (at 20.0 μg L− 1) were obtained for cadmium and lead, respectively, with a sample throughput of 24 h− 1. The measurement trueness of the developed method was evaluated by analyzing a certified reference material and spiked environmental water samples. The proposed method is well suited to detect the target elements at concentration levels below the maximum allowed concentrations endorsed by the European Framework Directive (2008/105/EC) in inland and coastal waters.  相似文献   

16.
The sequential injection (SIA) technique was applied for the on-line preparation of an “oil in water” microemulsion and for the determination of aluminum in new and used lubricating oils by electrothermal atomic absorption spectrometry (ET AAS) with Zeeman-effect background correction. Respectively, 1.0, 0.5 and 1.0 ml of surfactants mixture, sample and co-surfactant (sec-butanol) solutions were sequentially aspirated to a holding coil. The sonication and repetitive change of the flowing direction improved the stability of the different emulsion types (oil in water, water in oil and microemulsion). The emulsified zone was pumped to fill the sampling arm of the spectrometer with a sub-sample of 200 μl. Then, 10 μl of this sample solution were introduced by means of air displacement in the graphite tube atomizer. This sequence was timed to synchronize with the previous introduction of 15 μg of Mg(NO3)2 (in a 10 μl) by the spectrometer autosampler. The entire SIA system was controlled by a computer, independent of the spectrometer. The furnace program was carried out by employing a heating cycle in four steps: drying (two steps at 110 and 130 °C), pyrolisis (at 1500 °C), atomization (at 2400 °C) and cleaning (at 2400 °C). The calibration graph was linear from 7.7 to 120 μg Al l−1. The characteristic mass (mo) was 33.2 pg/0.0044 s and the detection limit was 2.3 μg Al l−1. The relative standard (RSD) of the method, evaluated by replicate analyses of different lubricating oil samples varied in all cases between 1.5 and 1.7%, and the recovery values found in the analysis of spiked samples ranged from 97.2 to 100.4%. The agreement between the observed and reference values obtained from two NIST Standard Certified Materials was good. The method was simple and satisfactory for determining aluminum in new and used lubricating oils.  相似文献   

17.
Copper, iron and zinc were determined in serum by simultaneous atomic absorption spectrometry (SIMAAS). The minimalism approach was adopted throughout this analytical method, to reduce time, costs, sample, reagent, energy requirements, and residue production. Samples were 80-fold diluted with 0.01% (w/v) Triton X-100+1% (v/v) HNO3 directly in the autosampler cups. Three strategies were implemented to match the final diluted analyte concentrations with the SIMAAS linear concentration ranges: a reduced 5 μl aliquot of analytical reference or diluted sample solution was introduced into the preheated graphite tube at 100 °C; a super-estimated pyrolysis temperature was chosen for selective zinc volatilization; and a mini argon flow of 50 ml min−1 was used during the atomization step. The pyrolysis and atomization temperatures for the simultaneous heating program were 700 and 2300 °C, respectively. The characteristic masses for copper (26 pg), iron (16 pg), and zinc (2.7 pg) were estimated from the analytical graphs. The detection limits (n=20, 3σ) were 4.0, 2.2, and 0.4 μg l−1 for copper, iron and zinc, respectively. The reliability of the entire procedure was checked with the analysis of Seronorm™ trace elements in serum (Sero AS). Serum samples of five volunteers were analyzed and the recovery tests for additions of 2.0, 2.0 and 1.0 mg l−1 were 100±4, 99±6, and 95±5% for copper, iron and zinc, respectively.  相似文献   

18.
Pereira LA  Amorim I  da Silva JB 《Talanta》2006,68(3):771-775
A procedure for the determination of cadmium, chromium, and lead in marine sediment slurries by electrothermal atomic absorption spectrometry is proposed. Slurry was prepared by mixing 10 mg of ground sample with particle size smaller than 50 μm completed to the weight of 1.0 g with a 3% nitric acid and 10% hydrogen peroxide solution. The slurry was maintained homogeneous with an aquarium air pump. For cadmium, the best results were obtained using iridium permanent with optimum pyrolysis and atomization temperatures of 400 and 1300 °C, respectively, a characteristic mass, mo (1% absorption), of 2.3 pg (recommended 1 pg). Without modifier use, zirconium, ruthenium, and rhodium mo were 3.4, 4.1, 4.6, and 4.8 pg, respectively. For chromium, the most sensitive condition was obtained with zirconium permanent with optimum pyrolysis and atomization temperatures of 1500 and 2500 °C, mo of 6.6 pg (recommended 5.5 pg); and without modifier use, rhodium, iridium, and ruthenium mo were 5.3, 8.8, 8.8, and 8.9 pg, respectively. For lead, the best modifier was also zirconium, mo of 8.3 pg for the optimum pyrolysis and atomization temperatures of 600 and 1400 °C, respectively, (recommended mo of 9.0 pg). For iridium, ruthenium, without modifier, and rhodium, mo were 14.7, 15.5, 16.5, and 16.5 pg, respectively. For all the modifiers selected in each case, the peaks were symmetrical with r2 higher than 0.99. Being analyzed (n = 10), two marine sediment reference materials (PACS-2 and MESS-2 from NRCC), the determined values, μg l−1, and certified values in brackets, were 2.17 ± 0.05 (2.11 ± 0.15) and 0.25 ± 0.03 (0.24 ± 0.01) for cadmium in PACS-2 and MESS-2, respectively. For chromium in PACS-2 and MESS-2 the values were 94.7 ± 5.6 (90.7 ± 4.6) and 102.3 ± 10.7 (106 ± 8), respectively. Finally, for lead in PACS-2 and MESS-2, the results obtained were 184 ± 7 (183 ± 8) and of 25.2 ± 0.40 (21.9 ± 1.2), respectively. For cadmium and lead in both samples and chromium in PACS-2, calibration was accomplished with aqueous calibration curves. For chromium in MESS-2, only with the standard addition technique results were in agreement with the certified ones. The limits of detection (k = 3, n = 10) obtained with the diluents were 0.1, 3.4, and 3.6 μg l−1 for cadmium, chromium, and lead, respectively.  相似文献   

19.
Ibrahim S.I. Adam 《Talanta》2009,77(3):1160-1164
A newly simple flow injection wetting-film extraction system coupled to flame atomic absorption spectrometry (FAAS) has been developed for trace amount of cadmium determination. The sample was mixed on-line with sodium diethyl dithiocarbamate and the produced non-charged Cd(II)-diethyl dithiocarbamate (DDTC) chelate complex was extracted on the thin film of diisobutyl ketone (DIBK) on the inner wall of the PTFE extraction coil. The wetting-film with the extracted analyte was then eluted by a segment of the cover solvent, and transported directly to the FAAS for evaluation. All the important chemical and flow parameters were optimized. Under the optimized conditions an enhancement factor of 35, a sample frequency of 22 h−1 and a detection limit of cL = 0.7 μg l−1 Cd(II) were obtained for 60 s preconcentration time. The calibration curve was linear over the concentration range 1.5-45.0 μg l−1 Cd(II) and the relative standard deviation, R.S.D. (n = 10) was 3.9%, at 10.0 μg l−1 concentration level. The developed method was successfully applied to cadmium determination in a variety of environmental water samples as well as waste-water sample.  相似文献   

20.
In this study a new method for determination of cadmium in alcohol fuel using Moringa oleifera seeds as a biosorbent in an on-line preconcentration system coupled to flame atomic absorption spectrometry (FAAS) was developed. Flow and chemical variables of the proposed system were optimized through multivariate designs. The limit of detection for cadmium was 5.50 μg L−1 and the precision was below 2.3% (35.0 μg L−1, n = 9). The analytical curve was linear from 5 to 150 μg L−1, with a correlation coefficient of 0.9993. The developed method was successfully applied to spiked alcohol fuel, and accuracy was assessed through recovery tests, with recovery ranging from 97.50 to 100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号