首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Differential pulse polarography was used for simultaneous determination of Sn2+ and Pb2+. But there is a problem for simultaneous determination and it is high overlapped DPPs of mentioned cations that their determination is impossible in the presence of each other, so multivariate calibration methods as chemomatrics methods were used for this determination. There are some disadvantageous for multivariate calibration methods that can be solved by a new and simple method called net analyte signal standard addition method. This method has some advantages, such as: the use of a full voltammogram, realization in a single step, therefore it does not require calibration and prediction steps and only a few measurements are required for the determination.  相似文献   

2.
Mixtures of R2Sn2+ and R3Sn+ compounds can be analysed by titrating their total amount potentiometrically with alkali, and then determining R2Sn2+ in another aliquot by amperometric titration with standard 8-hydroxyquinoline solution. In mixtures of R2Pb2+ and R3Pb+ compounds, dialkyllead ion can be titrated amperometrically with ferrocyanide solution and trialkyllead ions with tetraphenylboron solution. A potentiometric method is described for the determination of small amounts of lead chloride in the presence of any alkyllead chloride.  相似文献   

3.
The luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 have been studied both at room-temperature and liquid-helium temperature and the decay times of Sn2+ and Pb2+ in this matrix have been measured and analyzed. According to the emission spectrum of Eu2+ there seems to be three different cation sites in SrB6O10. Europium, tin, and lead were also used as sensitizers for Mn2+ and the energy transfer processes were characterized. Eu2+-Mn2+ energy transfer was inefficient due to the transfer within different Eu2+ centers. The sensitization action of Sn2+ and Pb2+ on Mn2+ was different because lead-lead energy transfer occurs (even at 4.2 K) but tin-tin transfer can be neglected. A fast diffusion model for the Pb2+ system is suggested.  相似文献   

4.
Two simple and selective methods for determination of stannous ion in radiopharmaceutical kits are proposed. One of this permits the estimation of stannic ion. The first method unsed is a potentiometric titration of Sn2+ in HCl medium, using KIO3 solution under nitrogen gas and a platinum redox electrode. The second method consists of a complexometric titration of tin (Sn2+ and Sn4+) using an EDTA standard solution at pH 5.5–5.6 without the use of nitrogen gas. The procedures employed indicate that both methods can be used for routine quantitative determination of tin in most labeled radiopharmaceuticals.  相似文献   

5.
Solid-contact Pb2+-selective electrodes (Pb2+-ISEs) were prepared by using polybenzopyrene doped with eriochrome black T as solid contact material and a conventional polyvinyl chloride membrane with lead ionophore IV as selective compound. Nernstian response down to 10?9?mol?dm?3 Pb2+ was obtained by careful control of the electrode conditioning process. Furthermore, the response at lowest concentrations was retained by exposing the solid-contact Pb2+-ISEs to a solution containing Na2EDTA. Finally, the solid-contact Pb2+-ISEs were used in the determination of lead in a synthetic sample (pPb2+?=?7.40). The analysis of the sample was done with direct potentiometry (pPb2+?=?7.64?±?0.11) and single standard addition method (pPb2+?=?7.27?±?0.07). These results were in good agreement with those obtained by inductively coupled plasma–mass spectrometry (pPb?=?7.34). The renewable response of the Pb2+-ISEs at low concentrations opens interesting possibilities when dealing with trace-level measurements of Pb2+.  相似文献   

6.
A simple, sensitive and selective spectrophotometric method for simultaneous determination of tretinoin and minoxidil using partial least square (PLS) calibration and H-point standard addition method (HPSAM) is described. The results of the H-point standard addition method show that minoxidil and tretinoin can be determined simultaneously with the concentration ratio of tretinoin to minoxidil varying from 2: 1 to 1: 33 in mixed samples. A partial least squares multivariate calibration method for the analysis of binary mixtures of tretinoin and minoxidil was also developed. The total relative standard error for applying the PLS method to eleven synthetic samples in the concentration range of 0–10 μg mL−1 tretinoin and 0–32 μg mL−1 minoxidil was 2.59 %. Both proposed methods (PLS and HPSAM) were also successfully applied in the determination of tretinoin and minoxidil in several synthetic pharmaceutical solutions.  相似文献   

7.
The applicability of H-point standard additions method (HPSAM) to the resolving of overlapping spectra corresponding to the sulfamethoxazole and trimethoprim is verified by UV-vis spectrophotometry. The results show that the H-point standard additions method with simultaneous addition of both analytes is suitable for the simultaneous determination of sulfamethoxazole and trimethoprim in aqueous media. The results of applying the H-point standard additions method showed that the two drugs could be determined simultaneously with the concentration ratios of sulfamethoxazole to trimethoprim varying from 1:18 to 16:1 in the mixed samples. Also, the limits of detections were 0.58 and 0.37 μmol L(-1) for sulfamethoxazole and trimethoprim, respectively. In addition the means of the calculated RSD (%) were 1.63 and 2.01 for SMX and TMP, respectively in synthetic mixtures. The proposed method has been successfully applied to the simultaneous determination of sulfamethoxazole and trimethoprim in some synthetic, pharmaceutical formulation and biological fluid samples.  相似文献   

8.
An accurate and sensitive multi-species species-specific isotope dilution GC–ICP–MS method was developed for the simultaneous determination of trimethyllead (Me3Pb+), monomethylmercury (MeHg+) and the three butyltin species Bu3Sn+, Bu2Sn2+, and BuSn3+ in biological samples. The method was validated by three biological reference materials (CRM 477, mussel tissue certified for butyltins; CRM 463, tuna fish certified for MeHg+; DORM 2, dogfish muscle certified for MeHg+). Under certain conditions, and with minor modifications of the sample pretreatment procedure, this method could also be transferred to environmental samples such as sediments, as demonstrated by analyzing sediment reference material BCR 646 (freshwater sediment, certified for butyltins). The detection limits of the multi-species GC–ICP–IDMS method for biological samples were 1.4 ng g−1 for MeHg+, 0.06 ng g−1 for Me3Pb+, 0.3 ng g−1 for BuSn3+ and Bu3Sn+, and 1.2 ng g−1 for Bu2Sn2+. Because of the high relevance of these heavy metal alkyl species to the quality assurance of seafood, the method was also applied to corresponding samples purchased from a supermarket. The methylated lead fraction in these samples, correlated to total lead, varied over a broad range (from 0.01% to 7.6%). On the other hand, the MeHg+ fraction was much higher, normally in the range of 80–100%. Considering that we may expect tighter legislative limitations on MeHg+ levels in seafood in the future, we found the highest methylmercury contents (up to 10.6 μg g−1) in two shark samples, an animal which is at the end of the marine food chain, whereas MeHg+ contents of less than 0.2 μg g−1 were found in most other seafood samples; these results correlate with the idea that MeHg+ is usually of biological origin in the marine environment. The concentration of butyltins and the fraction of the total tin content that is from butyltins strongly depend on possible contamination, due to the exclusively anthropogenic character of these compounds. A broad variation in the butylated tin fraction (in the range of <0.3–49%) was therefore observed in different seafood samples. Corresponding isotope-labeled spike compounds (except for trimethyllead) are commercially available for all of these compounds, and since these can be used in the multi-species species-specific GC-ICP-IDMS method developed here, this technique shows great potential for routine analysis in the future.  相似文献   

9.
《Electroanalysis》2005,17(17):1589-1594
Simultaneous determination of bismuth and copper by anodic stripping voltammetry using H‐point standard addition method (HPSAM) with simultaneous addition of analytes is described. The effect of various parameters including acid concentration, accumulation time, accumulation potential and concentration ratio of analytes in the standard solution on the sensitivity and accuracy of method were investigated. The results of applying the H‐point standard addition method showed that Cu2+ and Bi3+ could be determined simultaneously with the concentration ratios of Cu2+ to Bi3+ varying from 1 : 15 to 16 : 1 in the mixed sample. The method was successfully applied to the simultaneous determination of copper and bismuth in some synthetic mixtures.  相似文献   

10.
The H-point standard addition method (HPSAM) was applied to handling spectrophotometric data for simultaneous determination of Zn2+ and Cu2+ or selective determination of Zn2+ in the presence of Cu2+. The ligand 1-(2-pyridylazo)2-naphthol (PAN) and its metal complexes (Zn-PAN and Cu(II)-PAN) were made water-soluble by the neutral surfactant Triton X-100, and therefore, no extraction with organic solvents was required. The method is based on the difference in absorbance of formed complexes between Zn2+ and PAN, at two different wavelengths at pH = 9.2. The formation of both the complexes was complete within five minutes. Zn2+ can be determined in the range of 0.2–25 μg/mL with satisfactory accuracy and precision in the presence of excess of Cu2+ and most other metal ions. Interference effects of common anions and cations were studied. Under working conditions, the proposed method was successfully applied to the simultaneous determination of Zn2+ and Cu2+ in several real and synthetic mixtures with different concentration ratio of Zn2+ and Cu2+. The text was submitted by the authors in English.  相似文献   

11.
This paper introduces an 1H NMR method to identify individual divalent metal cations Be2+, Mg2+, Ca2+, Sr2+, Zn2+, Cd2+, Hg2+, Sn2+, and Pb2+ in aqueous salt solutions through their unique signal shift and coupling after complexation with the salt of ethylenediaminetetraacetic acid (EDTA). Furthermore, quantitative determination applied for the divalent metal cations Ca2+, Mg2+, Hg2+, Sn2+, Pb2+, and Zn2+ (limit of quantification: 5–22 μg/ml) can be achieved using an excess of EDTA with aqueous model salt solutions. An internal standard is not required because a known excess of EDTA is added and the remaining free EDTA can be used to recalculate the quantity of chelated metal cations. The utility of the method is demonstrated for the analysis of divalent cations in some food supplements and in pharmaceutical products.  相似文献   

12.
We report on an anodic stripping voltammetric method for the determination of tin using a glassy carbon electrode modified with bismuth and poly(bromophenol blue). After an accumulation time of 60?s at ?1.20?V (vs. SCE), the response of the electrode to tin in 1.0?M HCl is linear in the concentration ranges from 20 nM to 1.0?μM, and from 1.0?μM to 20?μM, with a detection limit of 7.0 nM (at an SNR of 3) and with relative standard deviations in the order of 3.0–3.8%. The method was validated by comparing the results with those obtained by AAS and successfully applied to the determination of tin in canned food.
Figure
Differential pulse stripping voltammetric responses of Sn2+ at Bi/Poly(BPB)/GCE in 1.0 M HCl . Sn2+ concentration (μM): 0.020, 0.10, 0.30, 0.50, 0.70, 1.0, 3.0, 5.0, 7.0, 10.0 and 20.0. Inset: Differential pulse stripping voltammograms of circle portion at low Sn2+ concentration are zoomed in.  相似文献   

13.
A simultaneous preconcentration and separation method for determination of trace amount of dissolved Ag+, Pb2+ and Pd2+ ions by modified octadecyl silica membrane disks with DBzDA18C6 was developed. The adsorbed metal complexes were eluted from disk with 10?mL of 4?M KCl and determined by flame atomic absorption spectroscopy. Several parameters such as anion effect, pH of sample solution, type of eluent, amount of ligand, sample and elution flow rate were evaluated. The effect of diverse ions on preconcentration was also investigated. A precocentration factor of 110 can easily be achieved depending on the volume of the sample. For 100?mL of the solution the linear dynamic rang were found to be 30–1000, 140–6000, 60–900?μg?l?1 for Ag+, Pb2+ and Pd2+, respectively. Based on three standard deviation of the blank the detection limit was obtained as 1.8, 8.0 and 4.2?μg?L?1 for Ag+, Pb2+, Pd2+, respectively. The formation constants of Ag+ and Pb2+ ions with DBzDA18C6 at 25?°C were determined from the molar conductance–mole ratio data. This method was applied for the determination of Ag+, Pb2+ and Pd2+ in environmental water, tea and soil samples.  相似文献   

14.
A two-step procedure including appropriate wet-digestions, separation of selenium from interfering ions such as heavy metal ions with pentyl alcohol and anodic stripping voltammetric (ASV) determination of Pb2+, Cu2+ and SeO3 2– is developed. The elements in digested whole blood and serum sample solutions were determined by using a standard addition method. 1 × 10–9 mol/L SeO2– 3, Cu2+ and Pb2+ were successfully determined with relative standard deviations of approximately 1–2% (n = 6–8). Received: 19 August 1996 / Revised: 24 February 1997 / Accepted: 28 February 1997  相似文献   

15.
The use of iron oxide/amino-functionalized silica core–shell magnetic nanoparticles for preconcentration of Pb2+ followed by its consecutive atomic absorption spectrometry determination is described. Effects of various operating variables, namely, solution pH, initial Pb2+ concentration, contact time, adsorbent dosage, sample volume, concentration and volume of desorbing solution, and co-existing ions on solid-phase extraction (SPE) of Pb2+ were studied by batch equilibrium technique. The experimental adsorption data were well fitted to the Langmuir isotherm model. The Langmuir adsorption capacity and equilibrium time were found to be 100 mg g?1 and 20 min, respectively. The adsorption data were also fitted to kinetic pseudo-first-order and pseudo-second-order models. Kinetic studies showed that the adsorption followed pseudo-second-order model. Under the optimal SPE conditions, the enrichment factor, detection limit and relative standard deviation for determination of Pb2+ were found to be 211, 1 μg L?1, and 3.7 % for 50 μg L?1, respectively. The proposed method was successfully applied to the determination of lead in a real sample with satisfactory results.  相似文献   

16.
Mesoporous SBA-16 was synthesized using tetraethoxysilane as silicon source and a ternary system consisting of surfactant F127, water and butanol. Owing to the excellent properties of SBA-16 such as lager surface area and strong accumulation ability, the stripping peak current of Cd2+ and Pb2+ remarkably increases at the SBA-16 modified carbon paste electrode. Moreover, the peak current of Cd2+ and Pb2+ further enhances after the addition of I?. Under the joint enhancement effects of SBA-16 and I?, the detection sensitivity of Cd2+ and Pb2+ is greatly improved. The influences of concentration of I?, amount of SBA-16, accumulation potential and time were investigated. As a result, a new electrochemical method with high sensitivity was developed for the simultaneous determination of Cd2+ and Pb2+. The limit of detection is 0.6 nM for Cd2+ and 1 nM for Pb2+. It was used to determine Cd2+ and Pb2+ in waste water sample, and the results consisted with the values that obtained by atomic absorption spectrometry.  相似文献   

17.
Ghasemi J  Seifi S 《Talanta》2004,63(3):751-756
An error analysis of predicted values using spectral correction matrix and partial least squares (PLS) modeling is applied for the determination of Zn2+ and Pb2+ with methylthymol blue (MTB) as a metallochromic indicator. The concentration ranges for Pb2+ and Zn2+ in standard solution sets are 0.5-5.2 and 0.1-2.5 μg ml−1, respectively. The experimental calibration set was composed of 20 sample solutions using a random design for two component mixtures. The absorption spectra were recorded from 400 to 700 nm. The two wavelengths, which exert the minimum error in prediction of two metal ion concentrations, are chosen according to an error analysis of different pairs of wavelengths. The effect of the pH on the sensitivity in determination of Zn2+ and Pb2+ using MTB was studied in order to choose the optimum pH (pH=6) for determination. The values of root mean square difference (RMSD) for lead and zinc using β-correction partial least squares were 0.0977 and 0.1266, respectively. The effect of diverse ions and several experimental parameters were studied. The method was used for the determination of lead and zinc in alloy samples.  相似文献   

18.
H-point standard addition method (HPSAM) is suggested as a simple and selective method for the determination of semicarbazide and hydrazine. The reduction of Cu2+ to Cu+ by semicarbazide and hydrazine in the presence of neocuproine (Nc) and the subsequent complex formation between Cu+ and Nc produced a sensitive spectrophotometric method for indirect determination of semicarbazide and hydrazine. The difference in the rate of reduction of Cu2+ with semicarbazide and hydrazine in cationic micellar media is the basis of this method. Semicarbazide can be determined in the range of 0.5-3.75 μg ml−1 with satisfactory accuracy and precision in the presence of excess hydrazine. The proposed method was successfully applied to the simultaneous determination of semicarbazide (0.5-3.75 μg ml−1) and hydrazine (0.5-5 μg ml−1) and also to the selective determination of semicarbazide in the presence of hydrazine in several synthetic mixtures containing different concentration ratios of semicarbazide and hydrazine.  相似文献   

19.
Hu C  Wu K  Dai X  Hu S 《Talanta》2003,60(1):17-24
A simple and effective chemically modified carbon paste electrode (CMCPE) for the simultaneous determination of lead(II) and cadmium(II) was developed in this work. The electrode was prepared by the addition of diacetyldioxime into a carbon paste mixture. Pb2+ and Cd2+ were preconcentrated on the surface of the modified electrode by complexing with diacetyldioxime and reduced at a negative potential (−1.10 V). Then the reduced products were oxidized by differential pulse stripping. The fact that two stripping peaks appeared on the voltammograms at the potentials of −0.65 V (Cd2+) and −0.91 V (Pb2+) demonstrates the possibility of simultaneous determination of Pb2+ and Cd2+. Under the optimized working conditions, calibration graphs were linear in the concentration ranges of 1.0×10−7-1.5×10−5 mol l−1 (Pb2+) and 2.5×10−7-2.5×10−5 mol l−1 (Cd2+), respectively. For 5 min preconcentration, detection limits of 1×10−8 mol l−1 (Pb2+) and 4×10−8 mol l−1 (Cd2+) were obtained at the signal noise ratio (SNR) of 3. To evaluate the reproducibility of the newly developed electrode, the measurements of 5×10−7 mol l−1 Pb2+ and Cd2+ were parallel carried out for six times at different electrodes and the relative standard deviations were 2.9% (Pb2+) and 3.2% (Cd2+), respectively. Interferences by some metals were investigated. Only Ni2+ and Hg2+ apparently affected the peak currents of Pb2+ and Cd2+. The diacetyldioxime modified carbon paste electrode was applied to the determination of Pb2+ and Cd2+ in water samples. The results indicate that this electrode is sensitive and effective for the simultaneous determination of Pb2+ and Cd2+.  相似文献   

20.
本文对乙二胺溶液中裸露金属原子簇用119Sn及207Pb核磁共振作了研究。对每个峰做了标识。根据谱线强度进行分析,得知溶液中锡与铅的比例大于固体中的比例。从自由能的角度看,Pb2Sn74-是最不稳定的一种原子簇,本文还对谱线中各条线都进行了理论拟合,结果与实验相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号