首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
A rapid method for the enantiomeric purity determination of efaroxan has been developed by capillary electrophoresis (CE) using a dual cyclodextrin (CD) system. The influence of the nature and the concentration of CDs on separation parameters has been studied. High resolution (Rs = 7) and peak efficiency (104 000-121 000 theoretical plates) values were obtained for efaroxan enantiomers by adding two cyclodextrins, one neutral (7.5 mM DM-β-CD) and the other negatively charged (3 mM CM-β-CD) to the running buffer composed of 100 mM phosphoric acid-triethanolamine (pH 3). These resolution and peak efficiencies values allowed the quantitation of the (S)-enantiomer of efaroxan at very low enantiomeric excess even if the minor component migrates after the major one. This method was fully validated for the enantiomeric impurity determination of the (S)-form of efaroxan at the 0.05% level. Calibration curve, expressed by the peak areas ratio versus the enantiomeric purity was linear over the 0.05-1% enantiomeric impurity range (r2 = 0.9996). Limits of detection (LOD) and quantification (LOQ), expressed in term of (S)-enantiomer impurity were 0.02% and 0.05%, respectively. The accuracy of the method at 0.12%, 0.50% and 0.80% enantiomeric impurity levels for the (S)-form were determined. Recoveries were in 94-102% range for each quality control sample and were determined with good precision (intra-day R.S.D. = 3.54%, inter-day R.S.D. = 5.33%).  相似文献   

2.
A new capillary electrophoresis (CE) method for the determination of quinolizidine alkaloids in Sophora medicinal plants was developed. A total of seven alkaloid components (cytisine, sophocarpine, matrine, lehmannine, sophoranol, oxymatrine and oxysophocarpine) were separated within 15 min. The running buffer was a 50 mM phosphate buffer containing 1%HP-β-CD and 3.3% isopropanol. The linear calibration ranges were 5.50-88.0 μg ml−1 for cytisine and lehmannine, 5.00-88.0 μg ml−1 for sophocarpine and sophoranol, 5.60-89.6 μg ml−1 for matrine and oxysophocarpine, and 24.0-384 μg ml−1 for oxymatrine. The recoveries of the seven alkaloids were 96.0-102.9% with relative standard deviations from 1.50 to 3.00% (n = 5). The method was successfully applied to different Sophora medicinal plants including Sophora flavescens, Sophora tonkinensis and Sophora alopecuroides.  相似文献   

3.
A simple and rapid reversed-phase LC method was developed and validated for simultaneous determination of three flavonoids, quercetin (QU), kaempferol (KA) and isorhamnetin (IS), in rabbit blood plasma. The plasma was deproteinized using 10% trichloroacetic acid and extracted by n-butanol–acetoacetate solvent prior to LC analysis. The analyte was separated on a reversed-phase column with acetonitrile and 0.1% phosphoric acid in water (27:73, v/v) as mobile phase at a flow-rate of 0.8 mL min?1, and UV detection wavelength at 369 nm. By this developed method, the concentrations of QU, KA and IS were linearly related to their responses in the range of 0.05–2.5 μg mL?1. The precision and accuracy for QU, KA and IS in plasma were within ±15% except for the limit of quantitation (LOQ), where they were within ±20%. The validated method has been successfully applied in the pharmacokinetic study of QU, KA and IS in rabbits after intragastric administration of an ethanol extract from traditional Chinese medicine Pollen Typhae.  相似文献   

4.
Chiral separation method development is usually very time-consuming due to the diversity in chemical structures of pharmaceutical drug substances as well as the suitable separation conditions and the problem to choose the appropriate chiral selector. This paper shows capillary zone electrophoresis (CZE) which was developed for chiral separation of a basic compound - rivastigmine (RIV) using 30 cm × 50 μm i.d. polyacrylamide (PAA)-coated fused-silica capillary (effective length 20 cm), amine-modified phosphate buffer of pH 2.5 and sulfated-β-CD (S-β-CD) as chiral selector. Other selected native or derivatized cyclodextrins (CDs) were also tested: β-CD (5, 30 mM), carboxymethyl-β-CD (5, 30 mM), dimethyl-β-CD (15 mM), hydroxypropyl-β-CD (5, 30 mM), hydroxypropyl-α-CD (5, 30 mM) and hydroxypropyl-γ-CD (5, 30 mM). Complete enantiomeric separation of RIV was achieved at 20 kV, 18 °C and detection at 200 nm within 8 min with R.S.D. for the absolute migration time reproducibility of less than 2.1%. Rectilinear calibration range was 5.0-500.0 μM of each enantiomer (r = 0.9994-0.9995). The CZE method proposed was used for the control of chiral purity of pharmaceutically active S-RIV and for the analysis of Exelon caps preparation.  相似文献   

5.
The inclusion complexes of isoquercitrin (IQ) with cyclodextrins (CDs) including β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) and dimethyl-β-cyclodextrin (DM-β-CD) have been investigated using the methods of steady-state fluorescence, UV-vis absorption and induced circular dichroism. The stoichiometric ratio of the three complexes was found to be 1:1 and the stability constants (K) were estimated from spectrofluorometric titrations, as well as the thermodynamic parameters. Maximum inclusion ability was measured in the case of DM-β-CD due to the increased hydrophobicity of the host cavity, followed by HP-β-CD and β-CD. The effect of pH on the complexation process was also quantitatively assessed. IQ exists in different molecular forms depending on pH and β-CDs were most suitable for inclusion of the neutral form of IQ. The phase-solubility diagrams obtained with β-CD, HP-β-CD and DM-β-CD were all classical AL type. And DM-β-CD provided the best solubility enhancement, 12.3-fold increase compared to 2.8- and 7.5-fold increase for β-CD and HP-β-CD. The apparent stability constants obtained from the solubility data at 25 °C were comparable with those obtained from the fluorescence assays. Moreover, 1H NMR was carried out, which revealed that the IQ favorably inserted into the inner cavity from the chromone part instead of the phenyl part, which was in agreement with molecular modeling studies.  相似文献   

6.
An electrochemical sensor for cinchonine (CCN) using the β-cyclodextrin (β-CD) modified poly(N-acetylaniline) (PAA) electrode has been developed, in which 1,4-hydroquinone (HQ) was chosen as a probe. Complexation of HQ with β-CD modified on the glassy carbon electrode (GCE) was examined by cyclic voltammetry (CV). HQ was included in the cavity of β-CD and reversible voltammograms were observed. In the presence of CCN, a competitive inclusion equilibrium with β-CD was established between HQ and CCN, lowering the peak current of HQ. The decrease in the peak current of HQ is directly proportional to the amount of CCN. Linear calibration plot was obtained over the range from 4.0 × 10−6 to 8.0 × 10−5 M with a detection limit (S/N = 3) of 2.0 × 10−6 M. From the inhibitory effect of CCN on the inclusion of HQ by β-CD, the apparent formation constant of CCN with the immobilized β-CD was estimated. This electrochemical sensor showed excellent sensitivity, repeatability, stability and recovery for the determination of CCN. The response mechanism of the sensor was discussed in detail. The optimum steric configuration of inclusion complex was presented by molecular dynamics simulation.  相似文献   

7.
Xu X  Ye H  Wang W  Yu L  Chen G 《Talanta》2006,68(3):759-764
Four flavonoids (rutin, hyperoside, quercitrin and quercetin) in Houttuynia cordata Thunb. and Saururus chinensis (Lour.) Bail. were determined by capillary electrophoresis with wall-jet amperometric detection. The working electrode was a 500 μm diameter carbon disc electrode and the detection potential was +0.95 V (versus Ag/AgCl). Effects of several important factors, such as the running buffer and its corresponding pH and concentration, separation voltage, injection time were investigated to acquire the optimum conditions for separation of these four flavonoids. Baseline separation for the four flavonoids was obtained within 21 min in a 60 cm length capillary at a separation voltage of 15 kV with a 60 mmoL/L Na2B4O7-120 mmoL/L NaH2PO4 buffer (pH 8.8) as running buffer. The relationship between peak currents and analyte concentrations was linear over about two orders of magnitude with detection limits (defined as S/N = 3) ranging from 0.02 to 0.05 μg/mL for all analytes. This method was applied for the determination of the above four flavonoids in H. cordata Thunb. and S. chinensis (Lour.) Bail. with simple extraction procedures, and the assay results were satisfactory.  相似文献   

8.
Heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) blending with hydroxy-terminated silicone oil (OH-TSO) coated solid-phase microextraction (SPME) fiber (DM-β-CD/OH-TSO) was first prepared with sol-gel technology and applied to headspace SPME for analysis of ephedrine (EP) and methamphetamine (MA) in human urine by gas chromatography (GC). By exploiting the advantages of the unique cavity-shaped cyclic molecular structure of CD and the superiorities of sol-gel coating technique, the novel fiber showed desirable extraction ability and operational stability. Influence of relevant experimental parameters (extraction time, extraction temperature, basicity, ionic strength, etc.) was systematically investigated. In the optimal conditions the proposed headspace SPME-GC method provided good linearity over four orders of magnitude with limit of detection (LOD) of ng/ml (0.33 ng/ml for EP, 0.60 ng/ml for MA). The recoveries of EP and MA in urine were 98.0% and 98.2%. And the relative standard deviations (R.S.D., n = 6) for EP and MA were 3.9% and 5.0%, respectively.  相似文献   

9.
Pressurized liquid extraction (PLE) and capillary electrochromatography (CEC) methods were developed for the simultaneous determination of five flavonoids, namely liquiritin, isoliquiritin, ononin, liquiritigenin and isoliquiritigenin, in licorice using baicalein as internal standard (IS). Peak suppression technique was used for the quantification of ononin because of its poor resolution with isoliquiritin. The analysis was performed on a Hypersil C18 capillary (3 μm, 100 μm/25 cm) with a mixture of 10 mM phosphate buffer (pH 3.0)/ACN (65:35, v/v) as mobile phase running at 25 kV and 30 °C. The detection wavelengths were set at 275 nm (without reference wavelength for liquiritin and liquiritigenin), 360 nm (without reference wavelength for isoliquiritin and isoliquiritigenin) and 254 nm (with reference wavelength of 405 nm for ononin). All calibration curves showed good linearity (R2 > 0.9993) within the test ranges. The LOD and LOQ were lower than 2.1 and 8.3 μg/mL, respectively. The RSDs of intra- and interday for relative peak areas of five analytes to IS were less than 3.8 and 4.7%, respectively, and the recoveries were 98.2–103.8%. The validated method was successfully applied to the quantitative analysis of five flavonoids in licorice, which is helpful to its quality control.  相似文献   

10.
The enantiomeric purity determination of a synthetic intermediate of new 3,4-dihydro-2,2-dimethyl-2H-1-benzopyrans, i.e. 4-amino-2,2-dimethyl-6-ethoxycarbonylamino-3,4-dihydro-2H-1-benzopyran, was successfully carried out using an anionic cyclodextrin (CD) derivative combined with a chiral ionic liquid (IL). In order to obtain high resolution and efficiency values, the addition of a chiral IL, i.e. ethylcholine bis(trifluoromethylsulfonyl)imide (EtChol NTf2), to the background electrolyte containing heptakis(2,3-di-O-methyl-6-O-sulfo)-β-CD (HDMS-β-CD) was found to be essential. A simultaneous increase in separation selectivity and enantioresolution seems to indicate a synergistic effect of HDMS-β-CD and EtChol NTf2. The best enantioseparation of the key intermediate was achieved using a methanolic solution of 0.75 M formic acid, 10 mM ammonium formate, 1.5 mM HDMS-β-CD and 5 mM EtChol NTf2. Levamisole was selected as internal standard. The optimized conditions allowed the determination of 0.1% of each enantiomer in the presence of its stereoisomer using the method of standard additions. The NACE method was then fully validated with respect to selectivity, response function, trueness, precision, accuracy, linearity and limits of detection and quantification.  相似文献   

11.
Molybdate was examined as a complex-forming additive to the CE background electrolytes (BGE) to affect the selectivity of separation of polyhydric phenols such as flavonoids (apigenin, hyperoside, luteolin, quercetin and rutin) and hydroxyphenylcarboxylic acids (ferulic, caffeic, p-coumaric and chlorogenic acid). Effects of the buffer concentrations and pH and the influence of molybdate concentration on the migration times of the analytes were investigated. In contrast to borate (which is a buffering and complex-forming agent generally used in CE at pH ≥9) molybdate forms more stable complexes with aromatic o-dihydroxy compounds and hence the complex-formation effect is observed at considerably lower pH. Model mixtures of cinnamic acid, ferulic acid, caffeic acid and 3-hydroxycinnamic acid were separated with 25 mM morpholinoethanesulfonic acid of pH 5.4 (adjusted with Tris) containing 0.15 mM sodium molybdate as the BGE (25 kV, silica capillary effective length 45 cm × 0.1 mm I.D., UV-vis detection at 280 nm). With 25 mM 2-hydroxy-3-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulphonic acid/Tris of pH* 7.4 containing 2 mM sodium molybdate in aqueous 25% (v/v) methanol as the BGE mixtures of all the above mentioned flavonoids, p-coumaric acid and chlorogenic acid could be separated (the same capillary as above, UV-vis detection at 263 nm). The calibration curves (analyte peak area versus concentration) were rectilinear (r > 0.998) for ≈8-35 μg/ml of an analyte (with 1-nitroso-2-naphthol as internal standard). The limit of quantification values ranged between 1.1 mg l−1 for p-coumaric acid and 2.8 mg l−1 for quercetin. The CE method was employed for the assay of flavonoids in medicinal plant extracts. The R.S.D. values ranged between 0.9 and 4.7% (n = 3) when determining luteolin (0.08%) and apigenin (0.92%) in dry Matricaria recutita flowers and rutin (1.03%) and hyperoside (0.82%) in dry Hypericum perforatum haulm. The recoveries were >96%.  相似文献   

12.
Separation of chiral primary amino compounds was efficiently achieved under reversed-phase high performance liquid chromatography (RP-HPLC) conditions using a mixture of non-chiral crown ether (18-crown-6) and dimethyl-β-cyclodextrin (DM-β-CD) in the mobile phase. Under these conditions, the amino group of the chiral compound was protonated in a low pH mobile phase, and then interacted with 18-crown-6 and DM-β-CD to form a sandwiched complex [18-crown-6 + amine + CD]. Enantiomers of the compound in the sandwiched complex were separated with good enantioselectivity. Formation of the sandwiched complex among the chiral compound and additives in the mobile phase is a key step of the chiral separation. Four different chiral amino compounds namely, 1-aminoindan (AI), 1,2,3,4-tetrahydro-1-naphthylamine (THNA), tyrosine (Tyr), and phenylalanine (Phe), were selected to demonstrate the separation using the sandwiched complex mechanism in RP-HPLC.  相似文献   

13.
A fast capillary zone electrophoresis (CZE) method has been developed for the determination of four flavonoids (liquiritin, licoisoflavone A, licochalconel A and calycosin) in Glycyrrhizae radix. After a series of optimization experiments, 100 mM borate buffer (pH 10.5), 30 kV applied voltage and 35 °C temperature were selected. The contents of four flavonoids in cultivated and wild crude drugs of Glycyrrhizae radix with different growth periods from one to four years, collected from different areas were successfully determined within 8 min, with satisfactory repeatability and recovery.  相似文献   

14.
An HPLC method of high resolution has been developed and validated for the simultaneous determination of ten prominent flavonoid aglycones in plant materials using a fused‐core C18‐silica column (Ascentis® Express, 4.6 mm × 150 mm, 2.7 μm). The separation was accomplished with an acetonitrile‐tetrahydrofuran gradient elution at a flow rate of 1 mL/min and temperature of 30°C. UV spectrophotometric detection was employed at 370 nm for flavonols (quercetin [QU], myricetin [MY], isorhamnetin [IS], kaempferol [KA], sexangularetin [SX], and limocitrin [LM]) and 340 nm for flavones (apigenin [AP], acacetin [AC], chrysoeriol [CH], and luteolin [LU]). The high resolution of critical pairs QU/LU (10.50), QU/CH (3.40), AP/CH (2.51), SX/LM (2.30), and IS/KA (2.70) was achieved within 30.3 min. The observed column back pressure was less than 4300 psi, thus acceptable for conventional HPLC equipment. The method was sensitive enough having LODs of 0.115–0.525 ng and good linearity (r > 0.9999) over the test range. The precision values, expressed as RSD values, were <7.5%, and the accuracy was in the range of 95.3–100.2% for all analytes except MY (73.8%). The method was successfully employed for the determination of flavonoids in several medicinal plants, such as Ginkgo biloba, Betula pendula, and a variety of Sorbus species.  相似文献   

15.
Orthogonal design and uniform design were used for the optimization of separation of enantiomers using 2,6-di-O-methyl-β-cyclodextrin (DM-β-CD) as a chiral selector by capillary zone electrophoresis. The concentration of DM-β-CD, buffer pH, running voltage, and capillary temperature were selected as variable parameters, their different effects on peak resolution were studied by the design methods. It was concluded that orthogonal design offers a rapid and efficient means for testing the importance of individual parameters and for determining the optimum operating conditions. However, for a large number of both factors and levels, uniform design is more efficient. The effect of addition of methanol and citric acid buffer on the separation of enantiomers was also examined.  相似文献   

16.
Direct capillary zone electrophoretic methods were developed for the separation of the enantiomers of unnatural β-substituted tryptophan analogues such as erythro- and threo-β-methyl-, β-2-propyl-, β-3-pentyl-, β-phenyl- and β-2,5-dimethoxyphenyltryptophan. Cyclodextrins (CDs) were chosen as chiral selectors because of their favorable properties (stability, commercial availability, low cost, UV transparency, inertness, etc.). Capillary zone electrophoresis was carried out using sulfopropylated-α-CD (SP2-α-CD), sulfopropylated-β-CD (SP2-β-CD) both with a degree of substitution of 2 moles/mole cyclodextrin, and sulfopropylated-β-CD (SP4-β-CD) with a degree of substitution of 4 moles/mole β-cyclodextrin. With this technique all compounds investigated are baseline resolved using different background electrolytes and chiral additives. The elution sequence was determined in all cases.  相似文献   

17.
Zhao-Yan Ren  Yan-Ping Shi 《Talanta》2009,78(3):959-801
A capillary zone electrophoresis method was developed for simultaneous determination of nine flavonoids, including two rare flavonols, in Tibetan medicine Anaphalis margaritacea. Baseline separation was performed at pH 9.6 with 25 mM Na2B4O7 and 10 mM NaH2PO4 buffer solution, 20 kV as driving voltage and 275 nm as detection wavelength. Repeatability tests showed that the R.S.D. of both intra- and inter-day migration times and peak areas were less than 5%. Recovery results ranged from 87.9% to 106.1%. Samples of A. margaritacea extracts were analyzed using the validated method, which is useful for its quality control.  相似文献   

18.
In order to differentiate two species of Radix Puerariae (Radix Puerariae lobatae and Radix Puerariae thomsonii) and to determine major isoflavonoids (puerarin, daidzin, daidzein and genistein) in the samples, a simple high performance liquid chromatography (HPLC) method with isocratic elution employing cyclodextrins (CDs) as mobile phase additives was developed. Various factors affecting the retention of isoflavonoids in the C18 reversed-phase column, such as the nature of CDs, the concentration of hydroxypropyl-β-cyclodextrin (HP-β-CD) and the methanol percentage in the mobile phase, were studied. Experimental results confirmed that HP-β-CD, as a very effective mobile phase additive, could markedly reduce the retention of isoflavonoids, especially daidzein and genistein. The elution of four isoflavonoids could be achieved on a Kromasil® C18 column within 56 min by using the methanol–water contained 5 mM HP-β-CD (25/75, v/v) mixture as the mobile phase. The formation of the inclusion complexes between isoflavonoids and HP-β-CD explained the modification of the retention of analytes. The apparent formation constants determined by HPLC confirmed that the stoichiometry of HP-β-CD-isoflavonoid complexes was 1:1, and the stability of the complexes depended on the size and property of isoflavonoids. The optimized method was successfully applied for the simultaneous determination of major isoflavonoids in P. lobatae and P. thomsonii samples. This work provides a useful method for the analysis of traditional Chinese herbs.  相似文献   

19.
The solvolysis of benzoyl halides (BzX) in the presence of dimethyl-β-cyclodextrin (DM-β-CD) was studied. Methylation or hydroxyalkylation of the hydroxyl groups in β-cyclodextrin increases their solubility and the highest possible concentration of DM-β-CD that can be dissolved in water is 0.2 M. The ability to use more readily soluble CDs may allow one to determine the stoichiometry of their complexes and the properties of water held in their cavity with increased precision. Based on the experimental results, this cyclodextrin forms host-guest complexes of variable stoichiometry where two reaction pathways are considered: in water and in the internal cavity of the cyclodextrin. We determined the rate constants for the halides in their reaction inside the internal cavity. This allowed the influence of the substituent and leaving group on the reactions in the bulk water and the internal cavity of DM-β-CD to be compared. Depending on whether the solvolysis reaction is preferentially associative or dissociative, the presence of the cyclodextrin has a catalytic or inhibitory effect, respectively.  相似文献   

20.
The structure of the inclusion complex of α-tocopherol (vitamin E compound) with 2,6-di-O-methylated β-cyclodextrin (DM-β-CD) was characterized by 2D ROESY NMR measurements, suggesting that DM-β-CD includes the side-chain moiety of α-tocopherol. The inclusion complexation of DM-β-CD showed the usefulness of water solubilizer for the radical scavenging assay of vitamin E compounds in aqueous solution. Using the electron paramagnetic resonance (EPR) competitive spin trapping method, we determined the oxygen radical (RO?) scavenging abilities of seven vitamin E compounds (tocopherols and tocotrienols), which were solubilized by DM-β-CD in water. The order of the RO? radical scavenging abilities for vitamin E compounds solubilized by DM-β-CD are α- > β- ≈ γ- > δ-, which is in agreement with the oxidation potential values of antioxidants. It is noted that the RO? radical scavenging abilities of tocotrienols are comparable to those of tocopherols. Based on the results, the mechanism of the antioxidant reaction of vitamin E compounds with the RO? radical is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号