首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The possibility of using moss (Funaria hygrometrica), immobilized in a polysilicate matrix as substrate for speciation of Cr(III) and Cr(VI) in various water samples has been investigated. Experiments were performed to optimize conditions such as pH, amount of sorbent and flow rate, to achieve the quantitative separation of Cr(III) and Cr(VI). During all the steps of the separation process, Cr(III) was selectively sorbed on the column of immobilized moss in the pH range of 4-8 while, Cr(VI) was found to remain in solution. The retained Cr(III) was subsequently eluted with 10 ml of 2 mol l−1 HNO3. A pre-concentration factor of about 20 was achieved for Cr(III) when, 200 ml of water was passed. The immobilized moss was packed in a home made mini-column and incorporated in flow injection system for obtaining calibration plots for both Cr(III) and Cr(VI) at low ppb levels that were compared with the plots obtained without column. After separation, the chromium (Cr) species were determined by inductively coupled plasma mass spectrometry (ICP-MS) and flame atomic absorption spectrometry (FAAS). The sorption capacity of the immobilized moss was found to be ∼11.5 mg g−1 for Cr(III). The effect of various interfering ions has also been studied. The proposed method was applied successfully for the determination of Cr(III) and Cr(VI) in spiked and real wastewater samples and recoveries were found to be >95%.  相似文献   

2.
Ma HL  Tanner PA 《Talanta》2008,77(1):189-194
An isotope dilution method has been developed for the speciation analysis of chromium in natural waters which accounts for species interconversions without the requirement of a separation instrument connected to the mass spectrometer. The method involves (i) in-situ spiking of the sample with isotopically enriched chromium species; (ii) separation of chromium species by precipitation with iron hydroxide; (iii) careful measurement of isotope ratios using an inductively coupled plasma mass spectrometer (ICP-MS) with a dynamic reaction cell (DRC) to remove isobaric polyatomic interferences. The method detection limits are 0.4 μg L−1 for Cr(III) and 0.04 μg L−1 for Cr(VI). The method is demonstrated for the speciation of Cr(III) and Cr(VI) in local nullah and synthetically spiked water samples. The percentage of conversion from Cr(III) to Cr(VI) increased from 5.9% to 9.3% with increase of the concentration of Cr(VI) and Cr(III) from 1 to 100 μg L−1, while the reverse conversion from Cr(VI) to Cr(III) was observed within a range between 0.9% and 1.9%. The equilibrium constant for the conversion was found to be independent of the initial concentrations of Cr(III) and Cr(VI) and in the range of 1.0 (at pH 3) to 1.8 (at pH 10). The precision of the method is better than that of the DPC method for Cr(VI) analysis, with the added bonuses of freedom from interferences and simultaneous Cr(III) determination.  相似文献   

3.
The synthesis of a new stable chelating resin from the polystyrene divinylbenzene copolymer is reported. The polystyrene is first functionalized with a phenolic group and then allowed to couple with diazotized anthranilic acid through the NN bond. The resulting polymer containing azophenolcarboxylate with an ONO chelating environment has been characterized by elemental analysis, hydrogen ion capacity, and water regain value. Its stability towards thermal and different chemical environments has been evaluated. The sorption capacity of the chelating resin for Cr(III) and Cr(VI) as a function of pH has been studied. The interesting point is that chromium(III) is selectively retained at ca. pH 5.0 and chromium(VI) at ca. pH 2.0. When packed in a column, the new material is able to separate Cr(III) from Cr(VI). Five replicate determinations of 10 μg Cr(III) and 10 μg Cr(VI) present in 100 mL solution gave recoveries of 96.9 ± 2.9% (for Cr(III)) and 96.2 ± 2.1% (for Cr(VI)) at the 95% confidence level. Calibration graph was linear over the concentration range of 0-250 μg L−1 of chromium species with correlation coefficient (R) of 0.99994. The detection limits based on 3σ criterion were determined to be 0.6 μg L−1 for Cr(III) and 0.9 μg L−1 for Cr(VI). The developed method was successfully used for the speciation of chromium in wastewater.  相似文献   

4.
A novel on-line preconcentration and determination system based on a fiber-packed column was developed for speciation analysis of Cr in drinking water samples prior to its determination by flame atomic absorption spectrometry (FAAS). All variables involved in the development of the preconcentration method including, pH, eluent type, sample and eluent flow rates, interfering effects, etc., were studied in order to achieve the best analytical performance. A preconcentration factor of 32 was obtained for Cr(VI) and Cr(III). The levels of Cr(III) species were calculated by difference of total Cr and Cr(VI) levels. Total Cr was determined after oxidation of Cr(III) to Cr(VI) with hydrogen peroxide. The calibration graph was linear with a correlation coefficient of 0.999 at levels near the detection limit and up to at least 50 μg L−1. The relative standard deviation (R.S.D.) was 4.3% (C = 5 μg L−1 Cr(VI), n = 10, sample volume = 25 mL). The limit of detection (LOD) for both Cr(III) and Cr(VI) species was 0.3 μg L−1. Verification of the accuracy was carried out by the analysis of a standard reference material (NIST SRM 1643e “Trace elements in natural water”). The method was successfully applied to the determination of Cr(III) and Cr(VI) species in drinking water samples.  相似文献   

5.
The concentrations of chromium (III) and (VI) in fly ash from nine Australian coal fired power stations were determined. Cr(VI) was completely leached by extraction with 0.01 M NaOH solution and the concentration was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). This was confirmed by determining Cr(III) and Cr(VI) in the extracts of fly ash that had been spiked with chromium salts. These analytical measurements were done using a combination of ion-exchange chromatography and ICP-AES. The elutant was 0.05 M HNO3 containing 0.5%-CH3OH. When the column was operated at a flow rate of 1.2 ml min−1 and samples were injected by use of a sample loop with a volume of 100 μl, Cr(III) and Cr(VI) in sample solution was exclusively separated within approximately 10 min. The detection limits (3σ) were 5 ng for Cr(III) (0.050 mg l−1) and 9 ng for Cr(VI) (0.090 mg l−1), respectively. A relative standard deviation of 1.9% (n = 6) was obtained for the determination by IC-ICP-AES of 0.25 mg l−1 Cr(III) and Cr(VI).  相似文献   

6.
On-line preconcentration system for the selective, sensitive and simultaneous determination of chromium species was investigated. Dual mini-columns containing chelating resin were utilized for the speciation and preconcentration of Cr(III) and Cr(VI) in water samples. In this system, Cr(III) was collected on first column packed with iminodiacetate resin. Cr(VI) in the effluent from the first column was reduced to Cr(III), which was collected on the second column packed with iminodiacetate resin. Hydroxyammonium chloride was examined as a potential reducing agent for Cr(VI) to Cr(III).The effects of pH, sample flow rate, column length, and interfering ions on the recoveries of Cr(III) were carefully studied. Five millilitres of a sample solution was introduced into the system. The collected species were then sequentially washed by 1 M ammonium acetate, eluted by 2 M nitric acid and measured by ICP-AES. The detection limit for Cr(III) and Cr(VI) was 0.08 and 0.15 μg l−1, respectively. The total analysis time was about 9.4 min.The developed method was successfully applied to the speciation of chromium in river, tap water and wastewater samples with satisfied results.  相似文献   

7.
A novel method for selective determination of Cr(III) and Cr(VI) in environmental water samples was developed based on target-induced fluorescence quenching of glutathione-stabilized gold nanoclusters (GSH-Au NCs). Fluorescent GSH-Au NCs were synthesized by a one-step approach employing GSH as reducing/protecting reagent. It was found that Cr(III) and Cr(VI) showed pH-dependent fluorescence quenching capabilities for GSH-Au NCs, and thus selective determination of Cr(III) and Cr(VI) could be achieved at different pHs. Addition of EDTA was able to effectively eliminate the interferences from other metal ions, leading to a good selectivity for this method. Under optimized conditions, Cr(III) showed a linear range of 25–3800 μg L−1 and a limit of detection (LOD) of 2.5 μg L−1. The Cr(VI) ion demonstrated a linear range of 5–500 μg L−1 and LOD of 0.5 μg L−1. The run-to-run relative standard deviations (n = 5) for Cr(III) and Cr(VI) were 3.9% and 2.8%, respectively. The recoveries of Cr(III) and Cr(VI) in environmental water samples were also satisfactory (76.3–116%). This method, with its simplicity, low cost, high selectivity and sensitivity, could be used as a promising tool for chromium analysis in environmental water samples.  相似文献   

8.
A simple and sensitive multicommutated flow procedure, implemented by employing a homemade light emitting diode (LED) based photometer, has been developed for the determination of chromium (VI) and total chromium in water. The flow system comprised a set of four solenoid micro-pumps, which were assembled to work as fluid propelling and as commutating devices. The core of the detection unit comprised a green LED source, a photodiode and a homemade flow cell of 100 mm length and 2 mm inner diameter. The photometric procedure for the speciation of chromium in natural waters was based on the reaction of Cr (VI) with 1,5-diphenylcarbazide. Cr (III) was previously oxidized to Cr (VI) and determined as the difference between total Cr and Cr (VI). After carrying out the assays to select the best operational conditions the features of the method included: a linear response ranging from 10 to 200 μg l−1 Cr (III) and Cr (VI) (r = 0.999, n = 7); limits of detection of 2.05 and 1.0 μg l−1 for Cr (III) and Cr (VI), respectively; a relative standard deviation lower than 2.0% (n = 20) for a typical solution containing 50 μg l−1 Cr; a sampling throughput of 67 and 105 determinations per hour for total Cr and Cr (VI), respectively, and recovery values within the range of 93-108% for spiked concentrations of the order of 50 μg l−1.  相似文献   

9.
A novel cloud point phase separation of cationic surfactant, Aliquat-336 and capabilities of its reactive solubilizing sites for selective extraction of chromium species at ultra trace levels was examined in natural water. The phase separation behavior of Aliquat-336 is studied with various additives. The nonionic surfactant, Triton X-114 was found to induce the cloud point phase separation of Aliquat-336. The separation of anionic Cr(VI) was enabled by the formation of ion associate with quaternary ammonium head group of Aliquat-336 at pH 2, and the recovery of Cr(VI) and Cr(III) were 101.4 ± 1.4% and 2.2 ± 0.4%, respectively at 0.5-1 ng mL−1, Total Cr was pre-concentrated as Cr-APDC species using the hydrophobic tail group at pH 6.5. The Cr(III) concentration was obtained by subtracting Cr(VI) from total Cr. The recovery of total Cr was 99.5 ± 1.2%. Parameters affecting extraction were assessed. The procedure was applied to NIST 1643c and NIST 1643d waters, and the sum of individual species obtained was compared with the certified chromium values. The method was also applied to various natural waters with limits of detection and pre-concentration factor of 0.010 and 0.025 ng mL−1; 10 and 10, respectively, for Cr(VI) and Cr(III)-APDC using ICP-MS operated in DRC mode.  相似文献   

10.
Maltez HF  Carasek E 《Talanta》2005,65(2):537-542
A procedure for chromium speciation by F AAS using a flow system has been proposed. In this system, Cr(III) and Cr(VI) ions were adsorbed sequentially onto a mini-column packed with silica gel modified with zirconium phosphate and a mini-column packed with silica gel modified with zirconium oxide, respectively. The elution of Cr(III) and Cr(VI) was made with, respectively, nitric acid solution and tris(hydroxymethyl)methylamine (THAM) solution in reverse mode and determination by flame atomic absorption spectrometry without interference of the matrix. Chemical and flow variables as well as concomitant ions were studied in the developed procedure. The enrichment factor for Cr(III) and Cr(VI) was 20.8 and 24.9, respectively, using a preconcentration time of 3.75 min. The limit of detection for Cr(III) and Cr(VI) was 1.9, and 2.3 μg l−1, respectively. The precision of the method, evaluated as the relative standard deviation in solutions containing 100 μg l−1 of chromium species, by analyzing a series of seven replicates, was lower than 3.0%. The accuracy was assessed through recovery experiments of water samples and using another methodology.  相似文献   

11.
A study was undertaken to evaluate Saccharomyces cerevisiae as a substrate for the biosorption of Cr(III) and Cr(VI) aiming to the selective determination of these species in aqueous solutions. The yeast cells were covalently immobilised on controlled pore glass (CPG), packed in a minicolumn and incorporated in an on-line flow injection system. The effect of chemical and physical variables affecting the biosorption process was tested in order to select the optimal analytical conditions for the Cr retention by S. cerevisiae. Cr(III) was retained by the immobilised cells and Cr(VI) were retained by CPG. The speciation was possible by selective and sequential elution of Cr(III) with 0.05 mol L−1 HCl and 2.0 mol L−1 HNO3 for Cr(VI). The influence of some concomitant ions up to 20 mg L−1 was also tested. Quantitative determinations of Cr were carried out by means of inductively coupled plasma optical emission spectrometry (ICP OES). Preconcentration factors of 12 were achieved for Cr(III) and 5 for Cr(VI) when 1.7 mL of sample were processed reaching detection limits of 0.45 for Cr(III) and 1.5 μg L−1 for Cr(VI). The speciation of inorganic Cr in different kinds of natural waters was performed following the proposed method. Spiked water samples were also analysed and the recoveries were in all cases between 81 and 103%.  相似文献   

12.
Chromium may exist in environmental waters as Cr(III) and Cr(IV), the latter being the toxic and carcinogenic form. Since atomic absorption spectrometry (AAS) and inductively coupled plasma atomic emission spectrometry can only yield information on total Cr concentration, a polymer resin bearing O,O-donor chelating groups such as the maleic acid-functionalized XAD(CO)CHCHCOOH resin was synthesized to selectively retain Cr(III) at pH 4.0-5.5. The dynamic breakthrough capacity of the resin for Cr(III) at pH 5.0 was 7.52 mg g−1, and the preconcentration factor extended to 250-300. Chromium(III) in the presence of 250-fold Cr(VI)—which was not retained—could be effectively preconcentrated on the NH4+-form of the resin and determined by AAS or diphenylcarbazide (DPC) spectrophotometry. When Cr(VI) was reduced to Cr(III) with Na2SO3 solution brought to pH 1 by the addition of 1 M H2SO4, and preconcentrated on the resin, total Cr could be determined. The developed method was validated with a blended coal sample CRM-1632. Since the adsorption behavior as a function of pH of possible interferent metal ions, e.g. Ni(II), Co(II), Cu(II), Cd(II), Zn(II), Pb(II) and Fe(III), was similar to that of Cr(III), selective elution of Cr(III) from the resin was realized using a mixture of 1 wt.% H2O2+1 M NH3. The eluate containing Cr as chromate could be directly analyzed by diphenyl carbazide spectrophotometry without any adverse effect from the common interferents of this method, i.e. Fe(III), Cu(II) Hg(II), VO3, MoO42− and WO42−. Various synthetic waste solutions typical of electroplating bath effluents containing Cr, Cu, Ni, Zn, Na, Ca, cyanide (and chemical oxidation demand (COD), achieved by glucose addition) were subjected to pretreatment procedures such as hypochlorite oxidation (of cyanide) and catalytic oxidation (of COD) with peroxodisulfate. Chromium determination gave satisfactory results. The combined column preconcentration—selective elution—diphenylcarbazide spectrophotometric determination was also successfully applied to the determination of Cr in artificial and real seawater.  相似文献   

13.
A lab-made hybrid mesoporous solid was employed in a flow injection solid phase extraction electrothermal atomic absorption spectrometric (FI–SPE–ETAAS) system for the selective retention of Cr(VI). The solid was prepared by co-condensation of sodium tetraethylortosilicate and 3-aminopropyltriethoxysilane by sol–gel methodology and one-pot synthesis and characterized by Fourier transform infrared spectroscopy, X ray diffraction spectroscopy, and scanning electronic microscopy. Adsorption capacities at different pH values of both, Cr(VI) and Cr(III), were also measured in order to obtain the optimum retention for Cr(VI) with no interference of Cr(III). The maximum capacity of adsorption (4.35 mmol g 1) was observed for pH values between 2–3, whilst Cr(III) was found to remain in solution (adsorption capacity = 0.007 mmol g 1). Then, a microcolumn (bed volume: 7.9 µL) was filled with the solid and inserted in the FI–ETAAS system for analytical purposes. Since the analyte was strongly retained by the filling in the anionic form, 0.1 mol L 1 hydroxylammonium chloride in 1 mol L 1 hydrochloric acid was selected as eluent due to its redox characteristics. In this way, the sorbed Cr(VI) was easily released in the cationic form. The enrichment factor (EF) was found as a compromise between sensitivity and sample throughput and a value of 27 was obtained under optimized conditions: pH 2, sample loading 2 mL min 1 (60 s), elution flow rate 0.5 ml min 1 (eluent volume: 75 μL).  相似文献   

14.
A simple, integrated method for the speciation of chromium in wastewater and sewage sludge was developed, utilising liquid anion exchange by Amberlite LA-2 (LAES) and final determination by electrothermal atomic absorption spectrometry (ETAAS). Samples were filtered through a 0.45 μm membrane filter and chromium species were determined in filtered water samples and in sludge on the filters. In the former case (filtrate), total Cr was determined directly by ETAAS, while for the determination of Cr(VI) the filtrate was buffered to pH 6.4, extracted with LAES and Cr(VI) was determined in the organic extract. Cr(III) was determined by the difference. In the latter case (filter), the filters were leached with an alkaline buffer solution (pH 12.7) and the supernatant was subjected to the same extraction procedure. For the determination of total leachable Cr, the filters were subjected to acid leaching with dilute HNO3 (pH 1) and the supernatant was subjected to ETAAS, after appropriate dilution with water. Then, Cr(III) was determined by the difference. The limits of detection (LOD) were 0.39 and 0.45 μg l−1 for total Cr and Cr(VI), respectively, in the dissolved phase and 2.10 and 0.87 ng g−1 for total Cr and Cr(VI) in the suspended solids. The recoveries of total Cr and Cr(VI) in filtrated wastewater samples and filters were quantitative, ranged from 93 to 106%. The effect of time and temperature of sonication and suspended solids concentration on total Cr and Cr(VI) recovery was studied. No significant difference in recoveries was obtained for sonication temperatures between 30 and 70 °C. However, sonication time equal to or higher than 30 min and concentration of suspended solids equal to or less than 30 mg significantly improved Cr recovery. The ETAAS program for the determination of Cr(VI) in Amberlite/MIBK extract was carefully optimised in the absence of a chemical modifier to avoid memory effects. The developed analytical method was applied for the determination of chromium species in wastewater and suspended solids of a municipal and a lab-scale wastewater treatment plant.  相似文献   

15.
A highly sensitive, selective and simple kinetic method was developed for the determination of dissolved chromium species based on the catalytic effect of Cr(III) and/or Cr(VI) on the oxidation of 2-amino-5-methylphenol (AMP) with H2O2. The fixed time and initial rate variants were used for kinetic spectrophotometric measurements by tracing the oxidized product at 400 nm for 10 min after starting the reaction. Boric acid and Tween-40 exerted pronounced activating and micellar sensitizing effects on the studied redox reaction, respectively. The optimum reaction conditions were: 3.0 mmol l−1 AMP, 0.45 mol l−1 H2O2, 0.50 mol l−1 boric acid, 4 v/v% Tween-40, 10 mmol l−1 phosphate buffer and pH 6.45 ± 0.02 at 35 °C. Both Cr(III) and Cr(VI) ions exerted the same catalytic effect on the studied reaction. Linear calibration graphs were obtained for the determination of up to 6.0 ng ml−1 Cr with detection limits of 0.054 and 0.10 ng ml−1 Cr; following the fixed time and initial rate methods, respectively. The proposed method was successfully applied to the speciation and determination of trace levels of dissolved Cr(III) and Cr(VI) in natural and effluents of industrial waste water. The total dissolved Cr(III) and Cr(VI) species was determined first. In a second run, Cr(VI) was determined alone after precipitation of Cr(III) ions in presence of Al(OH)3 collector, where Cr(III) is then determined by difference. Moreover, published catalytic-spectrophotometric methods for chromium determination were reviewed.  相似文献   

16.
This study proposes the dual electromembrane extraction followed by high performance liquid chromatography for selective separation-preconcentration of Cr(VI) and Cr(III) in different environmental samples. The method was based on the electrokinetic migration of chromium species toward the electrodes with opposite charge into the two different hollow fibers. The extractant was then complexed with ammonium pyrrolidinedithiocarbamate for HPLC analysis. The effects of analytical parameters including pH, type of organic solvent, sample volume, stirring rate, time of extraction and applied voltage were investigated. The results showed that Cr(III) and Cr(VI) could be simultaneously extracted into the two different hollow fibers. Under optimized conditions, the analytes were quantified by HPLC instrument, with acceptable linearity ranging from 20 to 500 μg L−1 (R2 values ≥ 0.9979), and repeatability (RSD) ranging between 9.8% and 13.7% (n = 5). Also, preconcentration factors of 21.8–33 that corresponded to recoveries ranging from 31.1% to 47.2% were achieved for Cr(III) and Cr(VI), respectively. The estimated detection limits (S/N ratio of 3:1) were less than 5.4 μg L−1. Finally, the proposed method was successfully applied to determine Cr(III) and Cr(VI) species in some real water samples.  相似文献   

17.
A novel in-capillary reduction and capillary electrophoretic (CE)-chemiluminescence (CL) method was developed for the sensitive and selective determination of chromium(III) and chromium(VI). The proposed method was based on the in-capillary reduction of Cr(VI) with acidic H2O2 to form Cr(III) using the zone-passing technique and chemiluminescence detection of Cr(III). The sample [Cr3+ and CrO42−], hydrochloric acid, and H2O2 (reductant) solution segments were injected for specified periods of time in this order from the anodic end of a capillary, followed by application of an appropriate running voltage between both ends. As both chromium species have opposite charges, Cr3+ migrates to the cathode while CrO42− ion, moving oppositely to the anode, reacts with acidic H2O2, resulted in formation of Cr3+. Based on the migration time difference of both Cr3+ ions, they were separated by zone electrophoresis. Running buffer was composed of 0.02 mol l−1 HAc-NaAc (pH 4.7) with 1×10−3 mol l−1 EDTA. Parameters affecting CE-CL separation and detection, such as reductant concentration, mixing mode of the analytes with CL reagent, CL reaction reagent pH and concentration, stability of luminol-hydrogen peroxide mixed solution were optimized. The limits of detection for chromium(III) and chromium(VI) (3σ) were 6×10−13 mol l−1 (mass concentration 12 zmol) and 8×10−12 mol l−1 (160 zmol), respectively. This method offered potential advantages of simplicity, sensitivity, selectivity and applicability to the determination of Cr(III) and Cr(VI) in environmental water.  相似文献   

18.
In acidic medium and in the presence of chloride ions 2-[2-(4-methoxy-phenylamino)-vinyl]-1,3,3-trimethyl-3H-indolium chloride forms complex with Cr(VI). The optimum conditions (pH, concentration of Cl- and the complex forming reagent) of the separation and extraction of Cr(VI) into toluene using this basic dye as a complexing reagent have been determined and the possible interferences of Ca, Mg, Na, K, Cr(III), Ni, Pb, Hg, Mn, Al, Cu have been studied. An electrothermal atomic absorption spectrometer (GFAAS) was used for the determination of Cr(VI). The detection limit of the method for Cr(VI) found to be 0.15 μg dm− 3 and RSD for spiked drinking water was better than 3%.  相似文献   

19.
Themelis DG  Kika FS  Economou A 《Talanta》2006,69(3):615-620
A new rapid and sensitive FI assay is reported for the simultaneous direct spectrophotometric determination of trace Cr(VI) and Cr(III) in real samples. The method is based upon the reaction of Cr(VI) with chromotropic acid (CA) in highly acidic medium to form a water-soluble complex (λmax = 370 nm). Cr(III) reacts with CA only after its on-line oxidation to Cr(VI) by alkaline KIO4. The determination of each chromium species in the sample was achieved by absorbance differences. The calibration curves were linear over the range 3-4000 μg l−1 and 30-1200 μg l−1 for Cr(VI) and Cr(III), respectively, while the precision close to the quantitation limit was satisfactory in both cases (sr = 3.0% for Cr(VI) and 4.0% for Cr(III) (n = 10) at 10 and 50 μg l−1 level, respectively). The method developed proved to be adequately selective and sensitive (cL = 1 and 10 μg l−1 for Cr(VI) and Cr(III), respectively). The application of the method to the analysis of water samples (tap and mineral water) gave accurate results based on recovery studies (93-106%). Analytical results of real sample analysis were in good agreement with certified values.  相似文献   

20.
A modified SBA-15 mesoporous silica material NH2-SBA-15 was synthesized successfully by grafting γ-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L−1 NH3·H2O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min−1 sample loading (300 s) and an elution flow rate of 2.0 mL min−1 (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 μg L−1 level with a detection limit of 0.2 μg L−1 (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号