首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple flow injection gas/diffusion method for the determination of trimethylamine (TMA) in seafood with potentiometric detection using tungsten oxide electrode has been developed. The method is based on the diffusion of TMA through a PTFE membrane from a sodium hydroxide donor stream to a phosphate buffer acceptor stream. The TMA in the acceptor stream passes through an electrochemical flow cell containing a tungsten oxide wire and a silver/silver chloride electrode, where TMA was sensitively detected. The parameters affecting the sensitivity of the electrode such as sodium hydroxide concentration, buffer concentration, pH, flow rate and injected volume were studied in details. The electrode response was linear in the concentration range from 1 to 10 μg ml−1 TMA with a correlation coefficient (R2) of 0.991 and a detection limit of 0.05 μg ml−1 TMA. The intra- and inter-days precision (R.S.D.) was found to be, respectively, 1.20 and 1.6% (n=6). The method was applied to the determination of TMA in fish tissue and recoveries of 99-100% were obtained for fish extracts. Results were in close agreement with those obtained by the existing classical official method. Common interference from those species that can diffuse through the membrane were removed by the addition of formaldehyde to the seafood extract. The method is simple, feasible with satisfactory accuracy and precision and thus, could be used for monitoring seafood quality with a sampling rate of 20±2 sample h−1.  相似文献   

2.
A gas diffusion-flow injection system was developed for the determination of carbon dioxide in gaseous samples. The calibration was based on the use of either gaseous carbon dioxide or aqueous sodium carbonate standards. Gaseous carbon dioxide samples and gaseous or aqueous standards were injected directly into a donor stream of 1.0×10−4 M H2SO4. In the gas diffusion unit, carbon dioxide diffused through a PTFE membrane into an acceptor stream containing a mixed acid/base indicator. The absorbance of the acceptor stream was monitored spectrophotometrically at 554 nm. The calibration plot was linear over the range of 5.00×102 to 1.27×104 μl l−1 with a sample throughput of 28 h−1 and 3.2% R.S.D. ([CO2]=2.37×103 μl l−1, n=12). The detection limit was determined as 2.50×102 μl l−1. The flow system was successfully applied to the analysis of several natural gaseous samples and the headspace of milk containers during storage. The flow injection results were found to be statistically indistinguishable at the 95% confidence level from those obtained by gas chromatography using thermal conductivity detection.  相似文献   

3.
Pinyou P  Youngvises N  Jakmunee J 《Talanta》2011,84(3):745-751
Ceric ammonium nitrate has been used for qualitative analysis of ethanol. It forms an intensely colored unstable complex with alcohol. In this work, a simple flow injection (FI) colorimetric method was developed for the determination of ethanol, based on the reaction of ethanol with ceric ion in acidic medium to produce a red colored product having maximum absorption at 415 nm. Absorbance of this complex could be precisely measured in the FI system. A standard or sample solution was injected into a deionized water donor stream and flowed to a gas diffusion unit, where the ethanol diffused through a gas permeable membrane made of plumbing PTFE tape into an acceptor stream to react with ceric ammonium nitrate in nitric acid. Color intensity of the reddish product was monitored by a laboratory made LED based colorimeter and the signal was recorded on a computer as a peak. Peak height obtained was linearly proportional to the concentration of ethanol originally presented in the injected solution in the range of 0.1-10.0% (v/v) (r2 = 0.9993), with detection limit of 0.03% (v/v). With the use of gas diffusion membrane, most of the interferences could be eliminated. The proposed method was successfully applied for determination of ethanol in some alcoholic beverages, validating by gas chromatographic method.  相似文献   

4.
Masadome T  Sonoda R  Asano Y 《Talanta》2000,52(6):1123-1130
A potentiometric flow injection determination method for iodide ion in a photographic developing solution was proposed by utilizing a flow-through type iodide ion-selective electrode detector. The sensing membrane of the electrode was Ag2S–AgI membrane. The response of the electrode detector as a peak-shape signal was obtained for injected iodide ion in a photographic developing solution. A linear relationship in the subnernstian zone was found to exist between peak height and the concentration of the iodide ion in a photographic developing solution in a concentration range from 0 to 6.0×10−5 mol l−1. The relative standard deviation for ten injections of 2×10−5 mol l−1 iodide ion in a photographic developing solution was 0.96% and the sampling rate was approximately 12–13 samples h−1. The iodide ion could be determined under coexisting of an organic reducing reagent and inorganic electrolytes of high concentration in a photographic developing solution sample solution by the present method.  相似文献   

5.
Komaba S  Arakawa J  Seyama M  Osaka T  Satoh I  Nakamura S 《Talanta》1998,46(6):1293-1297
The concentration of potassium was determined by a combination of flow injection analysis (FIA) with an all-solid-state potassium sensor detection. The all-solid-state potassium-selective electrode possessing long-term potential stability was fabricated by coating an electroactive polypyrrole/poly(4-styrenesulfonate) film electrode with a plasticized poly(vinyl chloride) membrane containing valinomycin. The simple FIA system developed in this laboratory demonstrated sensitivity identical to that in the batch system and achieved considerably rapid assay (150 samples h−1). Analyses of soy sauce and control serum samples by this FIA system yielded results in good agreement with those obtained by conventional measurements.  相似文献   

6.
Films of non-stoichiometric tungsten oxides have been deposited onto glassy carbon surfaces by electrodeposition from acidic W(VI) solutions and the chemical stability of these oxides was investigated by using the electrochemical quartz crystal microbalance. At these modified surfaces, rotating disc electrode voltammetric experiments indicated that iodate is electrocatalytically reduced in a mass-transport controlled process. The influence of the film thickness on the response to iodate was investigated and the results indicated a linear relationship between catalytic current and film thickness for relatively thin oxide layers. The modified electrode was employed successfully as an amperometric sensor for iodate in a flow injection apparatus. The linear response of the developed method is extended from 5 μmol L−1 to 5 mmol L−1 iodate with a limit of detection (signal-to-noise = 3) of 1.2 μmol L−1. The repeatability of the method for 41 injections of a 1 mmol L−1 iodate solution was 0.8% and the throughput was determined as 123 h−1. Interference from other oxidant anions such as nitrate and nitrite was not noticeable, whereas bromate and chlorate interfere at slight levels. The method was used in the determination of the iodate content in table salt samples.  相似文献   

7.
De Marco R  Phan C 《Talanta》2003,60(6):1215-1221
The direct flow injection potentiometric (FIP) analysis of phosphate in hydroponic nutrient solution has been carried out using a cobalt-wire ion-selective electrode (ISE). Synthetic hydroponic nutrient solution, commercial hydroponic nutrient solution and working hydroponic farm nutrient solution were analysed for phosphate using the FIP technique. It is shown that FIP results compare favourably to standard methods of analysis such as spectrophotometry and indirect photometric ion-pair chromatography. Reproducible FIP response curves with a slope of −(47.57±0.03) mV per decade and intercept of −(169.7±0.1) mV were obtained for four separate calibrations in the concentration range 5.0×10−4–1.0×10−2 M H2PO4. Anion corrections for interferences by Cl, NO3 and SO42− were applied to all samples using the selectivity coefficients determined independently using a fixed interference method. Nevertheless, it was found that anion corrections were not necessary, as the deviations fell within the bounds of experimental error for the cobalt-wire ISE technique (i.e.±2–5% R.S.D.). The proposed FIP method enables the direct determination of phosphate in hydroponic nutrient solutions.  相似文献   

8.
A flow injection analysis (FIA) method for the determination of peroxide value (PV) in edible oils is described. Oil sample (undiluted) and KI reagent were aspirated into a homemade reaction chamber where the redox reaction between iodide in the aqueous phase and hydroperoxides in the oil was effected by applying a short (typically 30 s) vortex action. After allowing for the emulsified oil phase to be separated from the aqueous phase (bottom layer), an aliquot of the aqueous phase containing triiodide was next aspirated to the surface of a triiodide-selective membrane for detection. The optimized FIA procedure is linear over 0.35-28.0 PV (mequiv. O2/kg) with a detection limit of 0.32 PV. Exhibiting good reproducibility (R.S.D. of 2.7% (n = 8) for the determination of 1.1 PV) and sampling rate of 80 samples h−1, the proposed method, unlike previous FIA procedures, completely eliminated the use of organic solvents (except the use of 2-propanol for cleaning of reaction chamber). Excellent correlation (R2 = 0.9949) between the proposed method and the manual official AOCS method was found when applied to the determination of PV in diverse type of edible oils (n = 20).  相似文献   

9.
A flow injection amperometric immunoassay system based on the use of screen-printed carbon electrode for the detection of mouse IgG was developed. An immunoelectrode strip, on which an immunosorbent layer and screen-printed carbon electrode were integrated, and a proposed flow cell have been fabricated. The characterization of the flow immunoassay system and parameters affecting the performance of the immunoassay system were studied and optimized. Amperometric detection at 0.0 V (versus Ag/AgCl) resulted in a linear detection range of 30-700 ng ml−1, with a detection limit of 3 ng ml−1. The signal variation among electrode strips prepared from variant batch did not exceed 8.5% (n=7) by measuring 0.5 μg ml−1 antigen standard solution.  相似文献   

10.
van Staden JF  Stefan RI 《Talanta》1999,49(5):1472-1022
An on-line automated system for the simultaneous flow injection determination of calcium and fluoride in natural and borehole water with conventional calcium-selective and fluoride-selective membrane electrodes as sensors in series is described. Samples (30 μl) are injected into a TISAB II (pH=5.50) carrier solution as an ionic strength adjustment buffer. The sample-buffer zone formed is first channeled to a fluoride-selective membrane electrode and then via the calcium-selective membrane electrode to the reference electrodes. The system is suitable for the simultaneous on-site monitoring of calcium (linear range 10−5–10−2 mol l−1 detection limit 1.94×10−6 mol l−1 recovery 99.22%, RSD<0.5%) and fluoride (linear range 10−5–10−2 mol l−1 detection limit 4.83×10−6 mol l−1 recovery 98.63%, RSD=0.3%) at a sampling rate of 60 samples h−1.  相似文献   

11.
Mesquita RB  Rangel AO 《Talanta》2005,68(2):268-273
A gas diffusion sequential injection system for spectrophotometric determination of free chlorine is described. The detection is based in the colorimetric reaction between free chlorine and a low toxicity reagent o-dianisidine. A gas diffusion unit is used to isolate free chlorine from the sample in order to avoid possible interferences. This feature results from the conversion of free chlorine to molecular chlorine (gaseous) with sample acidification. With minor changes in the operating conditions, two different dynamic ranges were obtained enhancing the application both to water samples and bleaches. The results obtained with the developed system were compared to the reference method, iodometric titration and proved not to be statistically different. A detection limit of 0.6 mg ClO/L was achieved. Repeatability was evaluated from 10 consecutive determinations being the results better than 2%. The two dynamic ranges presented different determination rates: 15 h−1 for 0.6-4.8 mg ClO/L (water samples) and 30 h−1 for 0.047-0.188 g ClO/L (bleaches).  相似文献   

12.
Flow injection analysis (FIA) procedures for the Spectrophotometric determination of phenol involving in-line concentration by solvent and sorbent extraction have been developed. The imine product formed in the reaction between phenol and 4-aminoantipyrine (4-AAP) is either extracted into chloroform (solvent extraction) or is temporarily retained on C18-modified silica material contained in a microcolumn (sorbent extraction). In the latter case two variants of detection have been used namely the Spectrophotometric measurement of the methanolic eluent containing the concentrated dye and at-column optosensing of the retained reaction product followed by methanol elution to maintain reversibility of the process. In the solvent extraction procedure a 10-fold increase of sensitivity compared to the common FIA method without extraction is achieved but no corresponding improvement in detectability is observed. Under optimized conditions the detection limit amounts to 8 μg l−1. Using sorbent extraction methodology, high concentration factors can be obtained when large sample volumes are used. The only limitation in getting correspondingly lower detection limits are an increasingly high and variable blank value with sampling volume. The detection limits obtained for measurement of the absorbance in the eluent and on-column optosensing are 11 μg l−1 and 0.4 μg l−1, respectively. A study of the extractability of various phenol derivates using both solvent and sorbent extraction revealed lower relative response rates compared to the FIA method without extraction. Phenolics that possess an additional acidic group are present in ionized form at the high pH of the assay and are not extractable at all.  相似文献   

13.
A flow-injection—conductimetric method was applied to the determination of ammonia, nitrate and nitrite at concentrations down to 5, 20 and 20 ng ml?1, respectively. Ammonia was determined by merging the injected sample with an alkaline solution (NaOHEDTA) and passing the mixture through a diffusion cell. The ammonia released was collected by a flowing stream of deionized water that passed through a conductance flow cell. Nitrate and nitrite concentrations were determined after reduction to ammonia in alkaline medium using a column filled with metallic zinc. The ammonia produced was then measured as described above. About 60 samples per hour can be processed with a relative standard deviation of about 1%. Satisfactory agreement was observed between results for ammonia in samples of natural water and nitrate in tap and mineral water determined by the proposed method and by standard spectrophotometric procedures. Speciation can be achieved by adding sulphanilic acid to remove nitrite from the sample and determining the ammonia without the use of the column.  相似文献   

14.
Summary The fractionation of eleven phenols which may be contaminants in drinking water has been accomplished by using acid-washed graphitised carbon black modified with trimesic acid and PEG 20 M.  相似文献   

15.
采用活化玻碳电极(GC)以伏安法对测定锰进行了研究。结果表明:沉积于电极表面的二氧化锰对锰(Ⅱ)的电化学氧化具有自催化作用,活化GC电极可极大地提高测定锰的灵敏度。在0.04mol LNH3 NH4Cl(pH9.0)底液中,锰浓度在6.0×10-8~1.0×10-5mol L范围内成线性关系,检出限为4.0×10-8mol L。用3×10-7mol L锰溶液重复测定9次,RSD为1.6%。  相似文献   

16.
A flow injection analysis (FIA) system for the determination of histamine was developed using histamine dehydrogenase (HmDH)-based electrode. Histamine dehydrogenase was immobilized in an osmium-derivatized redox polymer, poly(1-vinylimidazole) complexed with Os(4,4′-dimethylbipyridine)2Cl2 (PVI-dmeOs), film on a glassy carbon electrode. As expected from the characteristics of this enzyme in a solution, this electrode exhibits high selectivity to histamine and is not sensitive to other primary amines including common biogenic amines, putrescine, cadaverine and tyramine. The detection limit for histamine was 100 pmol ( μl injection) at a S/N ratio of 3, and response linearity was retained up to 0.6 mM. The FIA system was successfully applied to the determination of histamine in fish samples. The performance of the FIA system is discussed and compared with a high-performance liquid chromatography (HPLC) method which is routinely used for histamine analysis.  相似文献   

17.
An electrochemical sensor based on Zinc oxide nanoparticles (ZnONPs) modified carbon paste electrode was designed for the toxic diuron pesticide detection. The ZnONPs were synthesized through the hydrothermal route and their structural properties were investigated via scanning electron microscopy (SEM) and X-ray diffraction powder (XRD). The designed ZnONPs-modified carbon paste electrode (ZnONPs-CPE) was characterized using cyclic voltammetry and electrochemical impedance spectroscopy. The sensor showed significantly enhanced sensitivity on the diuron oxidation peak current, compared to the bare carbon paste electrode. Qualitative and quantitative analysis were performed using cyclic voltammetry (CV) and square wave voltammetry (SWV). Experimental parameters such as pH, amount of ZnONPs and frequency were evaluated and the optimized conditions were obtained with 0.1 M phosphate buffer solution at pH=8, a frequency of 50 Hz and a quantity of 5 mg of ZnONPs. Under these conditions, linear responses ranging from 1.3 to 7.7 μM and 8.6 to 30 μM of diuron were obtained, with correlation coefficients of R2=0.994 and 0.996 respectively. Detection and quantification limits of 0.22 μM and 0.84 μM (S/N=3) were respectively achieved based on the 3σ method. The interference of some ions on the oxidation peak of diuron on ZnONPs-CPE was also evaluated and no interference was observed, therefore demonstrating the selectivity of the sensor. The proposed sensor, designed with ecofriendly materials, is sensitive, selective and was effectively used for diuron determination in soils and water samples with recoveries ranging from 98 % to 101.5 %.  相似文献   

18.
A new coated ion-selective electrode for the determination of trace vanadyl ions (VO2+) by flow injection potentiometry (FIP) with a home-made flow cell has been developed. The PVC-based membrane was coated on a graphite electrode with an effective area of 4.90 mm2. The optimum membrane contains 5 wt.% 1,8-diaminonaphtalene as ionophore, 35 wt.% plasticizer 2-nitrophenyl octyl ether, 55 wt.% PVC and 5 wt.% additive potassium tetrakis (p-chlorophenyl) borate. The electrode in flow injection potentiometry resulted in well defined peaks for vanadyl ions with a very high sampling rate (180 injections/h). Linear calibration was obtained from 1.14×10−7 to 1.14×10−1 M vanadyl ions, with a slope of 28.3±0.3 mV per decade change in vanadyl concentration, and very low detection limit of 1.14×10−7 M and the electrode can be used for at least 1 months without any considerable change in potential response. Selectivity coefficients for several ions were obtained by the matched potential method with respect VO2+ ions. The flow cell is simple to construct and free from memory effect problems over long periods of use. The sensor was used for the recovery of trace VO2+ ions from tap water and the determination of VO2+ in synthetic sample.  相似文献   

19.
In this work, a simple experimental procedure was reported for the electroanalytical determination of selenium (IV) using reduced graphene oxide (rGO) to modify glassy carbon electrode (GCE). The rGO was obtained by reduction of graphene oxide obtained via Hummer’s method. The synthesised rGO was characterised using X-ray diffraction, Raman spectroscopy, scanning electron microscope (SEM), energy-dispersive spectroscopy and transmission Electron microscopy (TEM). GCE was modified with rGO and the electrochemical properties of the bare and modified electrode were investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The results obtained showed that the modified electrode exhibited more excellent electrochemical properties than the bare GCE. The optimum conditions for detection of selenium in water using square wave anodic stripping voltammetry were as follows: deposition potential ?500 mV, pH 1, pre-concentration time of 240 s and 0.1 M nitric acid was used as supporting electrolyte. The linear regression equation obtained was I (µA) = 0.8432C + 9.2359 and the detection limit was calculated to be 0.85 μg L?1. However, Cu(II) and Cd(II) are the two cations that interfered in the analysis of selenium in water.

The sensor was also applied for real sample water analysis and the result obtained was affirmed with inductively coupled plasma optical emission spectroscopic method. It is believed that our proposed sensor hold promise for practical application.  相似文献   

20.
以离子液体1-丁基-3-甲基咪唑六氟磷酸盐为粘合剂制备了碳糊电极,然后将氧化石墨烯滴涂到碳糊电极表面制成了一种新型的氧化石墨烯修饰碳离子液体电极。研究了鸟嘌呤和腺嘌呤在修饰电极上的电化学行为。实验结果表明,在0.1 mol/L醋酸盐缓冲溶液中(pH4.5),鸟嘌呤和腺嘌呤在该修饰电极上具有良好的电化学行为,在2.0×10-7~1.5×10-5mol/L浓度范围内鸟嘌呤和腺嘌呤的浓度在该电极上与电化学响应信号呈良好的线性关系,相关系数分别为为0.992和0.996。信噪比为3时,检出限为1.0×10-8mol/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号