首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Every attempt of using a computer to model reality has two main uncertainties: the conceptual uncertainty and the data uncertainty. The conceptual uncertainty deals with the choice of model selected for the simulation and the data uncertainty is about the precision and accuracy of the input data. They are often determined experimentally and may thus be encumbered by a number of uncertainties. Normally when treating uncertainties in input data these data are treated as independent variables. However, since many of these parameters are determined together they are actually correlated. This paper focuses on chemical stability constants, a most important parameter for chemical calculations based on speciation. Commonly in the literature they are at best given with an uncertainty interval. We propose to also give the covariance matrix thus giving the opportunity to really assess correlations. In addition we discuss the effect of these correlations on speciations.  相似文献   

2.
Chemical analyses become more and more expensive to perform, and more and more research is based on numerical simulation. However, all numerical models are subject to uncertainties, either in the implementation of the model towards reality or simply that the desired input data are not explicitly known without uncertainties. These uncertainties will affect the predictability of any model and thus it is of vital interest that the effect of these uncertainties is known. Especially if the result of the simulations is a topic upon which serious decisions are going to be made. In this paper, we outline a simple and rather straight forward approach to the effect of uncertainties on such simple chemical calculations as solubility of a solid phase in a given water and the chemical speciation of a solution. In addition, we also touch upon the much more complicated matter of uncertainties in sorption modelling??a subject which will be enlightened in much greater detail in an upcoming NEA publication in the matter.  相似文献   

3.
Uncertainties in Solubility Calculations   总被引:1,自引:0,他引:1  
Summary.  When considering the possible migration of hazardous elements in groundwater, one has to take into account several phenomena, e.g. solubility, ion exchange, adsorption, matrix diffusion, and transport paths. Here, we focus upon the solubility which in turn depends on several more or less uncertain chemical properties. Uncertainties in the data during laboratory experiments aiming at measurements of thermodynamic constants may cause uncertainties in the amount of some species of several tenths of the relative mass fraction. The thermodynamic data may then be used for solubility calculations under different conditions and water compositions. Clearly, there are several uncertainties associated with solubility calculations in the rock-water system. First, there is the effect of uncertainties in thermodynamic data such as stability and solubility constants, and also enthalpies of reaction if the water is not at room temperature. Furthermore, there are the rock-water interactions which will change the water composition as different minerals come in contact with the water flowing through a system of fractures. Studies in mineralogy to an accuracy good enough for modeling of water evolution are difficult to perform, and therefore the mineral composition of the rock and thus the water composition should be treated as parameters subjected to uncertainties. In addition, there are also conceptual uncertainties with respect to input data. The calculation of a solubility should be an easy task for every chemist, but in fact results differing by orders of magnitude are found even when the modelers have used the same computer program and the same data. In this paper, uncertainties associated with solubility calculations are discussed. The results are exemplified on the calculated solubilities of some actinides in groundwater from crystalline rock. Received August 21, 2000. Accepted (revised) May 18, 2001  相似文献   

4.
A general method for calculating the electrochemical availability of a trace metal in a multi-ligand system is illustrated by calculations on lead in artificial seawater. The procedure adopted assumes that the metal is accumulated at a mercury-coated rotating disc electrode during the plating process by the reversible reduction of metal ions. Although uncertainties in the rate constants and stability constants employed prevent the model from being used predictively, qualitative relationships between chemical speciation and electrochemical availability are discussed. The sensitivity of the calculated electrochemical availability to uncertainties in the stability constants and rate constants and variations in diffussion layer thickness and pH is considered in some detail. The results of the calculations are used to formulate recommendations for the electrochemical analysis of untreated natural samples.  相似文献   

5.
To assess the chemical reactivity, toxicity, and mobility of pollutants in the environment, knowledge of their species distributions is critical. Because their direct measurement is often infeasible, speciation modeling is widely adopted. Mercury (Hg) is a representative pollutant for which study of its speciation benefits from modeling. However, Hg speciation modeling is often hindered by a lack of reliable thermodynamic constants. Although computational chemistry (e.g., density functional theory [DFT]) can generate these constants, methods for directly coupling DFT and speciation modeling are not available. Here, we combine computational chemistry and continuum-scale modeling with curated online databases to ameliorate the problem of unreliable inputs to Hg speciation modeling. Our AQUA-MER databases and web server ( https://aquamer.ornl.gov ) provides direct speciation results by combining web-based interfaces to a speciation calculator, databases of thermodynamic constants, and a computational chemistry toolkit to estimate missing constants. Although Hg is presented as a concrete use case, AQUA-MER can also be readily applied to other elements. © 2019 Wiley Periodicals, Inc.  相似文献   

6.
An updated H2/O2 kinetic model based on that of Li et al. (Int J Chem Kinet 36, 2004, 566–575) is presented and tested against a wide range of combustion targets. The primary motivations of the model revision are to incorporate recent improvements in rate constant treatment and resolve discrepancies between experimental data and predictions using recently published kinetic models in dilute, high‐pressure flames. Attempts are made to identify major remaining sources of uncertainties, in both the reaction rate parameters and the assumptions of the kinetic model, affecting predictions of relevant combustion behavior. With regard to model parameters, present uncertainties in the temperature and pressure dependence of rate constants for HO2 formation and consumption reactions are demonstrated to substantially affect predictive capabilities at high‐pressure, low‐temperature conditions. With regard to model assumptions, calculations are performed to investigate several reactions/processes that have not received much attention previously. Results from ab initio calculations and modeling studies imply that inclusion of H + HO2 = H2O + O in the kinetic model might be warranted, though further studies are necessary to ascertain its role in combustion modeling. In addition, it appears that characterization of nonlinear bath‐gas mixture rule behavior for H + O2(+ M) = HO2(+ M) in multicomponent bath gases might be necessary to predict high‐pressure flame speeds within ~15%. The updated model is tested against all of the previous validation targets considered by Li et al. as well as new targets from a number of recent studies. Special attention is devoted to establishing a context for evaluating model performance against experimental data by careful consideration of uncertainties in measurements, initial conditions, and physical model assumptions. For example, ignition delay times in shock tubes are shown to be sensitive to potential impurity effects, which have been suggested to accelerate early radical pool growth in shock tube speciation studies. In addition, speciation predictions in burner‐stabilized flames are found to be more sensitive to uncertainties in experimental boundary conditions than to uncertainties in kinetics and transport. Predictions using the present model adequately reproduce previous validation targets and show substantially improved agreement against recent high‐pressure flame speed and shock tube speciation measurements. Comparisons of predictions of several other kinetic models with the experimental data for nearly the entire validation set used here are also provided in the Supporting Information. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 44: 444–474, 2012  相似文献   

7.
Sensitivity analysis is an important tool in model validation and evaluation that has been employed extensively in the analysis of chemical kinetic models of combustion processes. The input parameters of a chemical kinetic model are always associated with some uncertainties, and the effects of these uncertainties on the predicted combustion properties can be determined through sensitivity analysis. In this work, first- and second-order global and local sensitivity coefficients of ignition delay time with respect to the scaling factor for reaction rate constants in chemical kinetic mechanisms for combustion of H2, methane, n-butane, and n-heptane are examined. In the sensitivity analysis performed here, the output of the model is taken to be natural logarithm of ignition delay time and the input parameters are the natural logarithms of the factors that scale the reaction rate constants. The output of the model is expressed as a polynomial function of the input parameters, with up to coupling between two input parameters in the present sensitivity analysis. This polynomial function is determined by varying one or two input parameters, and allows the determination of both local and global sensitivity coefficients. The order of the polynomial function in the present work is four, and the factor that scales the reaction rate constant is in the range from 1/e to e, where e is the base of the natural logarithm. A relatively small number of sample runs are required in this approach compared to the global sensitivity analysis based on the highly dimensional model representation method, which utilizes random sampling of input (RS-HDMR). In RS-HDMR, sensitivity coefficients are determined only for the rate constants of a limited number of reactions; the present approach, by contrast, affords sensitivity coefficients for a larger number of reactions. Reactions and reaction pairs with the largest sensitivity coefficients are listed for ignition delay times of four typical fuels. Global sensitivity coefficients are always positive, while local sensitivity coefficients can be either positive or negative. A negative local sensitivity coefficient indicates that the reaction promotes ignition, while a positive local sensitivity coefficient suggests that the reaction actually suppresses ignition. Our results show that important reactions or reaction pairs identified by global sensitivity analysis are usually rather similar to those based on local sensitivity analysis. This finding can probably be attributed to the fact that the values of input parameters are within a rather small range in the sensitivity analysis, and nonlinear effects for such a small range of parameters are negligible. It is possible to determine global sensitivity coefficients by varying the input parameters over a larger range using the present approach. Such analysis shows that correlation effects between an important reaction and a minor reaction can have relatively sizable second-order sensitivity coefficient in some cases. On the other hand, first-order global sensitivity coefficients in the present approach will be affected by coupling between two reactions, and some results of the first-order global sensitivity analysis will be different from those determined by local sensitivity analysis or global sensitivity analysis under conditions where the correlation effects of two reactions are neglected. The present sensitivity analysis approach provides valuable information on important reactions as well as correlated effects of two reactions on the combustion characteristics of a chemical kinetic mechanism. In addition, the analysis can also be employed to aid global sensitivity analysis using RS-HDMR, where global sensitivity coefficients are determined more reliably.  相似文献   

8.
Monumental, recent and rapidly continuing, improvements in the capabilities of ab initio theoretical kinetics calculations provides reason to believe that progress in the field of chemical kinetics can be accelerated through a corresponding evolution of the role of theory in kinetic modeling and its relationship with experiment. The present article reviews and provides additional demonstrations of the unique advantages that arise when theoretical and experimental data across multiple scales are considered on equal footing, including the relevant uncertainties of both, within a single mathematical framework. Namely, the multiscale informatics framework simultaneously integrates information from a wide variety of sources and scales: ab initio electronic structure calculations of molecular properties, rate constant determinations for individual reactions, and measured global observables of multireaction systems. The resulting model representation consists of a set of theoretical kinetics parameters (with constrained uncertainties) that are related through elementary kinetics models to rate constants (with propagated uncertainties) that in turn are related through physical models to global observables (with propagated uncertainties). An overview of the approach and typical implementation is provided along with a brief discussion of the major uncertainties (parametric and structural) in theoretical kinetics calculations, kinetic models for complex chemical mechanisms, and physical models for experiments. Higher levels of automation in all aspects, including closed‐loop autonomous mixed‐experimental‐and‐computational model improvement, are advocated for facilitating scalability of the approach to larger systems with reasonable human effort and computational cost. The unique advantages of combining theoretical and experimental data across multiple scales are illustrated through a series of examples. Previous results demonstrating the utility of simultaneous interpretation of theoretical and experimental data for assessing consistency in complex systems and for reliable, physics‐based extrapolation of limited data are briefly summarized. New results are presented to demonstrate the high predictive accuracy of multiscale informed models for both small (molecular properties) and large (global observables) scales. These new results provide examples where the optimization yields physically realistic parameter adjustments and where physical model uncertainties in experiments are larger than kinetic model uncertainties. New results are also presented to demonstrate the utility of the multiscale informatics approach for design of experiments and theoretical calculations, accounting for both theoretical and experimental existing knowledge as well as relevant parametric and structural uncertainties in interpreting potential new data. These new results provide examples where neglecting structural uncertainties in design of experiments results in failure to identify the most worthwhile experiment. Further progress in the chemical kinetics field (particularly at the intersection of theory, kinetic modeling, and experiment) would benefit from increased attention to understanding parametric and structural uncertainties for all three—the uncertainty magnitude and cross‐correlations among model parameters as well as limitations of the model structures themselves.  相似文献   

9.
Summary.  This review reveals that, in contrast to the general opinion, the aqueous speciation of nickel is poorly known. Besides the fairly well established first hydrolysis constant, data are scarce and only poor estimates can be derived for higher Ni hydrolysis constants from a few solubility studies. The situation is even worse in the case of aqueous carbonate complexes. No reliable experimental study has been published so far and almost all numbers reported in thermodynamic databases are unacceptable estimates. In this review we scrutinise all these published estimates and propose expectation ranges of nickel carbonate complex stability through correlation with other known thermodynamic constants. Solubility constants for a few simple nickel solids are known or have been estimated from thermochemical data. However, none of these simple solids is of geochemical relevance at ambient conditions. Based on field evidence, classes of solids are identified which potentially govern nickel concentrations in ground and surface waters. Recent spectroscopic data indicate that magnesium clay minerals and layered double hydroxides are the most prominent candidates for nickel-bearing solids at ambient conditions. Corresponding author. E-mail: wolfgang.hummel@psi.ch Dedicated to the memory of Prof. Rolf Grauer Received January 14, 2003; accepted January 24, 2003 Published online May 15, 2003  相似文献   

10.
Miller JR  Taylor PD 《Talanta》1989,36(8):879-881
Many non-linear regression programs which optimize the stability constants of chemical equilibria make use of Jacobian matrices for both the simulation of speciation by Newton-Raphson iteration and the optimization of parameters by Gauss-Newton iteration. An extended mathematical treatment is described here which shows that the full Jacobian matrix is partitioned into quadrants and that only one of these quadrants has been described in previous studies. This more complete treatment also corrects an error in the sign of the equation given in earlier work for the partial derivatives partial differential log h/ partial differential log beta (or partial differential pX/ partial differential log beta).  相似文献   

11.
Compounds formed by exchanging one of the resveratrol hydroxy groups to methoxy or formyl groups are biologically important. Quantum chemical DFT calculations were applied for the simulation of some of their properties. Their optimized structures and charge distributions were computed. Based on the calculated vibrational force constants and optimized molecular structure infrared and Raman spectra were calculated. The characteristics of the vibrational modes were determined by normal coordinate analysis. Applying the calculated thermodynamic functions also for resveratrol, methanol, formaldehyde and water, thermodynamic equilibria were calculated for the equilibria between resveratrol and its methyl and formyl substituted derivatives, respectively.  相似文献   

12.
Mathematical models based on structure-activity relationships and perturbed molecular orbital theory have been developed to calculate the ionization pK(a)s for a large number of organic molecules. These models include resonance, direct and indirect electrostatic field effects, sigma induction, steric effects, differential solvation and hydrogen bonding. The thermodynamic microscopic ionization constants, pk(i), of molecules with multiple ionization sites and the corresponding complex speciation as a function of pH have been determined using these chemical reactivity models. For a molecule of interest SPARC (SPARC performs automated reasoning in chemistry) calculates all of the microscopic ionization constants and the fraction of each species as a function pH along with the titration (charge) curve. The system has been tested on several biologically and environmentally important compounds.  相似文献   

13.
Pitzer's ion interaction model has been widely accepted for calculating the thermodynamic properties for electrolytes at high ionic strength. For weak electrolytes, a better estimation can be obtained by combining the model with chemical equilibria. The method of calculation is to treat each individual species as a single, separated ion. The concentration of each ion will be constrained by the mass balance equation and its activity will be guarded by the stability constants. Including chemical equilibria in Pitzer's model provides not only a better estimation of the thermodynamic properties of weak electrolytes but also a better understanding of the equilibrium among the complexes. The results may be used for correcting the effect from high ionic strength solution when determining the stability constants. When considering chemical equilibria, some of the parameters reported by Pitzer may have to be reestimated. The method of estimation and comparison between final results are presented. The binary system of HF, and the ternary systems of CuCl2 in NaCl and in HCl are used for demonstration.  相似文献   

14.
A key issue regarding the speciation of Al(3+) in serum is how well the ligands citric acid and phosphate can compete with the iron transport protein serum transferrin for the aluminum. Previous studies have attempted to measure binding constants for each ligand separately, but experimental problems make it very difficult to obtain stability constants with the accuracy required to make a meaningful comparison between these ligands. In this study, effective binding constants for Al-citrate and Al-phosphate at pH 7.4 have been determined using difference UV spectroscopy to monitor the direct competition between these ligands and transferrin. The analysis of this competition equilibrium also includes the binding of citrate and phosphate as anions to apotransferrin. The effective binding constants are 10(11.59) for the 1:1 Al-citrate complexes and 10(14.90) for the 1:2 Al-citrate complexes. The effective binding constant for the 1:2 Al-phosphate complex is 10(12.02). No 1:1 Al-phosphate complex was detected. Speciation calculations based on these effective binding constants indicate that, at serum concentrations of citrate and phosphate, citrate will be the primary low-molecular-mass ligand for aluminum. Formal stability constants for the Al-citrate system have also been determined by potentiometric methods. This equilibrium system is quite complex, and information from both electrospray mass spectrometry and difference UV experiments has been used to select the best model for fitting the potentiometric data. The mass spectra contain peaks that have been assigned to complexes having aluminum:citrate stoichiometries of 1:1, 1:2, 2:2, 2:3, and 3:3. The difference UV results were used to determine the stability constant for Al(H(-1)cta)-, which was then used in the least-squares fitting of the potentiometric data to determine stability constants for Al(Hcta)+, Al(cta), Al(cta)2(3-), Al(H(-1)cta)(cta)(4-), Al2(H(-1)cta)2(2-), and Al3(H(-1)cta)3(OH)(4-).  相似文献   

15.
Free energy calculations on three model processes with theoretically known free energy changes have been performed using short simulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral particles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall simulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete thermodynamic integration where sufficient sampling needs to be obtained at every λ-point, but only if the initial conformations do properly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolecular free energy calculations.  相似文献   

16.
A complete characterization of the aqueous solution Fe(III) and Fe(II) coordination chemistry of a saccharide-based ferrichrome analogue, 1-O-methyl-2,3,6-tris-O-[4-(N-hydroxy-N-ethylcarbamoyl)-n-butyryl]-alpha-D-glucopyranoside (H3LN236), is reported including relevant thermodynamic parameters and growth promotion activity with respect to both Gram-negative and Gram-positive bacterial strains. The saccharide platform is an attractive backbone for the design and synthesis of ferrichrome analogues because of its improved water solubility and hydrogen-bonding capabilities, which can potentially provide favorable receptor recognition and biological activity. The ligand deprotonation constants (pKa values), iron complex (FeIII(LN236) and FeII(LN236)1-) protonation constants (KFeHxL-236-N), overall Fe(III) and Fe(II) chelation constants (beta110), and aqueous solution speciation were determined by spectrophotometric and potentiometric titrations, EDTA competition equilibria, and cyclic voltammetry. Log betaIII110 = 31.16 and pFe = 26.1 for FeIII(LN236) suggests a high affinity for Fe(III), which is comparable to or greater than ferrichrome and other ferrichrome analogues. The E1/2 for the FeIII(LN236)/FeII(LN236)1- couple was determined to be -454 mV (vs NHE) from quasi-reversible cyclic voltammograms at pH 9. Below pH 6.5, the E1/2 shifts to more positive values and the pH-dependent E1/2 profile was used to determine the FeII(LN236)1- protonation constants and overall stability constant log betaII110 = 11.1. A comparative analysis of similar data for an Fe(III) complex of a structural isomer of this exocyclic saccharide chelator (H3LR234), including strain energy calculations, allows us to analyze the relative effects of the pendant arm position and hydroxamate moiety orientation (normal vs retro) on overall complex stability. A correlation between siderophore activity and iron coordination chemistry of these saccharide-hydroxamate chelators is made.  相似文献   

17.
Metal toxicity is not related to the total metal ion concentration, but to those of some specific Cu(II) species. The Permeation Liquid Membrane technique is based on the carrier-mediated transport of the test metal across a hydrophobic membrane and enables discrimination between various trace metal species in solution. The present work shows how the labile and inert Cu(II) complexes can be determined selectively, by varying the flow-rate of the test solution, in a flow-through cell. A mathematical model of metal flux through the PLM, based on diffusion-limited transport under steady-state conditions, is described. The model and the performance of the technique were studied in well-defined synthetic solutions containing simple organic hydrophilic ligands forming either inert (nitrilotriacetic acid), or labile complexes with Cu(II) (tartaric acid, malonic acid). The results were compared with theoretical predictions of thermodynamic species distribution in solution. Uncertainties on stability constants for copper speciation calculation were taken into account. The detection limits of the device are discussed. This work demonstrates that the flow-through cell is a reliable tool for copper speciation measurements in natural waters.  相似文献   

18.
Metal-ligand interactions are critical components of metalloprotein assembly, folding, stability, electrochemistry, and catalytic function. Research over the past 3 decades on the interaction of metals with peptide and protein ligands has progressed from the characterization of amino acid-metal and polypeptide-metal complexes to the design of folded protein scaffolds containing multiple metal cofactors. De novo metalloprotein design has emerged as a valuable tool both for the modular synthesis of these complex metalloproteins and for revealing the fundamental tenets of metalloprotein structure-function relationships. Our research has focused on using the coordination chemistry of de novo designed metalloproteins to probe the interactions of metal cofactors with protein ligands relevant to biological phenomena. Herein, we present a detailed thermodynamic analysis of Fe(II), Co(II), Zn(II), and[4Fe-4S]2(+/+) binding to IGA, a 16 amino acid peptide ligand containing four cysteine residues, H2N-KLCEGG-CIGCGAC-GGW-CONH2. These studies were conducted to delineate the inherent metal-ion preferences of this unfolded tetrathiolate peptide ligand as well as to evaluate the role of the solution pH on metal-peptide complex speciation. The [4Fe-4S]2(+/+)-IGA complex is both an excellent peptide-based synthetic analogue for natural ferredoxins and is flexible enough to accommodate mononuclear metal-ion binding. Incorporation of a single ferrous ion provides the FeII-IGA complex, a spectroscopic model of a reduced rubredoxin active site that possesses limited stability in aqueous buffers. As expected based on the Irving-Williams series and hard-soft acid-base theory, the Co(II) and Zn(II) complexes of IGA are significantly more stable than the Fe(II) complex. Direct proton competition experiments, coupled with determinations of the conditional dissociation constants over a range of pH values, fully define the thermodynamic stabilities and speciation of each MII-IGA complex. The data demonstrate that FeII-IGA and CoII-IGA have formation constant values of 5.0 x 10(8) and 4.2 x 10(11) M-1, which are highly attenuated at physiological pH values. The data also evince that the formation constant for ZnII-IGA is 8.0 x 10(15) M-1, a value that exceeds the tightest natural protein Zn(II)-binding affinities. The formation constant demonstrates that the metal-ligand binding energy of a ZnII(S-Cys)4 site can stabilize a metalloprotein by -21.6 kcal/mol. Rigorous thermodynamic analyses such as those demonstrated here are critical to current research efforts in metalloprotein design, metal-induced protein folding, and metal-ion trafficking.  相似文献   

19.
The methods for thermodynamic calculations of the equilibria in solutions of mercury salts and complexes are presented. The calculations of equilibrium constants in non-aqueous solvents are based on the transfer activity coefficients of mercury ions from water to the non-aqueous solvent. The dismutation and precipitation reaction constants are calculated, and the redox potentials of mercury systems are measured. Examples of analytical use of the thermodynamic functions of mercury salt solvation are given in the text.  相似文献   

20.
The potentiometric titrations of Zn2+, Cu2+ and 12 Ln3+ metal ions were obtained in ethanol to determine the titration constants (defined as the at which the [-OEt]/[Mx+]t ratios are 0.5, 1.5, and 2.5) and in two cases (La3+ and Zn2+) a complete speciation diagram. Several simple monobasic acids and aminium ions were also titrated to test the validity of experimental titration measurements and to establish new constants in this medium that will be useful for the preparation of buffers and standard solutions. The dependence of the titration constants on the concentration and type of metal ion and specific counterion effects is discussed. In selected cases, the titration profiles were analyzed using a commercially available fitting program to obtain information about the species present in solution, including La3+ for which a dimer model is proposed. The fitting provides the microscopic values for deprotonation of one to four metal-bound ethanol molecules. Kinetics for the La3+-catalyzed ethanolysis of paraoxon as a function of are presented and analyzed in terms of La3+ speciation as determined by the analysis of potentiometric titration curves. The stability constants for the formation of Zn2+ and Cu2+ complexes with 1,5,9-triazacyclododecane as determined by potentiometric titration are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号