首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
Photosensitized degradation has been used to remove a broad range of organic pollutants, generally with mineralization to CO2 and other inorganic products such as Cl and . TiO2 and Fe3+ are the photosensitizers mainly used to accelerate the degradation of persistent organic chemicals. Various analytical techniques were used to identify the degradation products and to monitor the degradation kinetics. Chromatographic techniques such as high-performance liquid chromatography (HPLC), gas chromatography (GC) and ion-exchange were used. Other analytical techniques, such as total organic carbon analysis, UV–visible spectrophotometry, spectrofluorimetry, and potentiometry, were also used. When the photodegradation is carried out in water, extraction methods such liquid–liquid extraction or solid-phase extraction need to be used, followed by GC or HPLC analysis. We review the analytical methods used for the identification of the products formed in photodegradation studies. Kinetic studies of the degradation are also reported.  相似文献   

3.
《中国化学快报》2021,32(10):2975-2984
Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of MOFs and the latest research progress of MOFs-based photocatalysts to degrade organic pollutants in water, such as organic dyes, pharmaceuticals and personal care products, and other organic pollutants. The main characteristics of different synthesis methods of MOFs, the main design strategies of MOFs-based photocatalysts, and the excellent performance of photocatalytic degradation of organic pollutants are summarized. At the end of this paper, the practical application of MOFs, the current limitations of MOFs, the synthesis methods of MOFs, and the future development trend of MOFs photocatalysts are explained.  相似文献   

4.
通过在三聚氰胺热分解过程中加入NaHCO3制备出具有氮缺陷的石墨相氮化碳(g-C3N4),利用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、N2吸附-脱附、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-vis DRS)和固体荧光光谱(PL)等方法对其进行表征,并在可见光(λ> 420nm)照射下,以水相中罗丹明B(RhB)的降解为模型反应,研究了该氮缺陷g-C3N4对有机污染物降解的光催化活性。结果表明,引入氮缺陷可以提高g-C3N4对可见光的吸收以及电子-空穴对的分离效率,进而提高g-C3N4的可见光催化活性。催化剂CNK0.005、CNK0.01和CNK0.05在30min内对RhB的降解率分别为79.8%、100.0%和87.6%;而在相同条件下,没有氮缺陷的g-C3N4对RhB的降解率仅为59.8%。  相似文献   

5.
The photocatalytic degradation of environmentally non-benign, toxic organic pollutants such as bisphenol A (BPA), brilliant green (BG), or mixture of dyes have been carried out using g-C3N4-TiO2 (GNT) nanocomposites. The GNT nanocomposites were synthesized by using hydrothermal method with different compositions and these nanocomposites were characterized using the different techniques. X-ray diffraction revealed that the anatase phase of TiO2 has been retained in composites; while characteristic reflection of g-C3N4 at 27.07° (d = 3.22 Å) is not observed due to its lower content in the nanocomposites. Raman spectra confirms the formation of composites between TiO2 with g-C3N4. Furthermore nano-scale dimensions of the bare or composites have been proved by FE-SEM and HR-TEM analysis. X-ray photoelectron spectroscopy (XPS) shows the presence of C, N, Ti and O as a constituents, with peaks due to CC, NCN of g-C3N4. Among the different nanocomposites, g-C3N4-TiO2 catalyst having 30% g-C3N4 and 70% TiO2 in molar proportion (i.e. 30-GNT) is exhibiting the highest efficiency for degradation of the different dyes in correlation to its higher surface area, lower optical band gap as well as more visible-light absorption (i.e., λ > 400 nm) in the electromagnetic spectrum.  相似文献   

6.
Organic compounds have enhanced different industrial outputs, but many related environmental challenges, such as groundwater and surface water pollution related to these compounds, have piqued governments' and citizens' interest worldwide. Photocatalysis has recently been proven to be an effective method of eliminating these pollutants. This study investigated the photocatalytic degradation of 1-naphthyl methylcarbamate (carbaryl pesticide) and methyl orange (dye) using an efficient SnO2 NPs@g-C3N4 nanocomposite photocatalyst. A straightforward solid-state technique created a mesoporous SnO2 NPs@g-C3N4 nanocomposite photocatalyst with various SnO2 NP concentrations. Various analytical approaches were used to characterize the SnO2 NPs@g-C3N4 nanocomposite photocatalyst, including X-ray powder diffraction (XRD) patterns, energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectra (FTIR), transmission electron microscopy (TEM), and ultraviolet–visible spectroscopy (UV–Vis). The degradation of carbaryl, as a model pesticide and methyl orange as a model dye, under visible light was tested to determine the photocatalytic activity of the SnO2 NPs@g-C3N4 nanocomposite with various mass percentages of SnO2 NPs. The results showed that SnO2 NPs successfully improved the photoactivity of g-C3N4. The photocatalytic activity showed that the carbaryl photodegradation rate increased from 32% by g-C3N4 to 85% and 96% for methyl orange by SnO2 NPs@g-C3N4 nanocomposite photocatalyst (20%), indicating that SnO2 NPs@g-C3N4 nanocomposite is a promising photocatalyst for pesticides and dyes. The enhanced photodegradation effectiveness of SnO2 NPs@g-C3N4 nanocomposite photocatalyst was related to increased surface area and improved illumination radiation ability by successfully separating charge carriers.  相似文献   

7.
Atomic force microscopy (AFM) is employed to monitor the surface morphology of polypyrrole (PPy) films grown on vitreous carbon substrates during the catalytic reduction of Cr(VI) to Cr(III). The morphology of freshly-prepared films depends on substrate characteristics. Upon reaction, uniform nodules of aggregated PPy clusters appear. No significant differences in surface morphology are found between its oxidized and reduced forms. Loss of catalytic activity after 8-9 oxidation/reduction cycles of exposure to the chromate solution (oxidation) and electrochemical recharging of the film at negative potentials (reduction) correlates well with the observed polymer film dissolution/detachment from the carbon substrate. Formation of well-defined circular features (PPy rings) at different stages leads to a model for the film degradation process that includes formation of Cl2 gas inside the polymer matrix. In the final stages, the bulk of the film typically fractures and detaches from the electrode. A catalytically inactive, ultrathin PPy layer remains on the substrate even after prolonged exposure to the target solution. A review of techniques for the study of PPy aging/degradation is given.  相似文献   

8.
A large variety of electrochemical advanced oxidation processes (EAOPs) have been recently developed to remove organic pollutants from wastewaters to avoid their serious health-risk factors from their environmental accumulation and to reuse the treated water for human activities. The effectiveness of EAOPs is based on the in situ production of strong reactive oxygen species (ROS) like hydroxyl radical (OH). Photoelectrocatalysis (PEC) has emerged as a promising powerful EAOP by combining photocatalytic and electrolytic processes. It consists in the promotion of electrons from the valence band to the conduction band of a semiconductor photocatalyst upon light irradiation, with production of positive holes. The fast recombination of the electron/hole pairs formed is avoided in PEC by applying an external bias potential to the photocatalyst that extracts the photogenerated electrons up to the cathode of the electrolytic cell. Organics can be oxidized directly by the holes, OH formed from water oxidation with holes and other ROS produced between the electrons and dissolved O2. This paper presents a general and critical review on the application of PEC to the remediation of wastewaters with organic pollutants. Special attention is made over the different kinds of photocatalysts utilized and preparation methods of the most ubiquitous TiO2 materials. Typical PEC systems and main operation variables that affect the effectiveness of the degradation process are also examined. An exhaustive analysis of the advances obtained on the treatment of dyes, chemicals and pharmaceuticals from synthetic solutions, as well as of real wastewaters, is performed. Finally, research prospects are proposed for the future development of PEC with perspectives to industrial application.  相似文献   

9.
《中国化学快报》2021,32(8):2513-2518
In this study,Mn catalysts have been designed based on manganese oxide octahedral molecular sieve(OMS-2) supports to optimize the catalytic activity in the degradation of organic pollutants.Herein,two different synthetic strategies:Pre-incorporation vs.wet-impregnation have been employed to synthesize[PW]-OMS-2 and [PW]/OMS-2.For [PW]-OMS-2,energy dispersive X-ray spectroscopy(EDX) confirmed that dispersed granular phosphotungstic acid attached and located at the surface of OMS-2,meanwhile some W atoms have been doped into frameworks of OMS-2.However,for [PW]/OMS-2,the W atoms cannot enter the OMS-2 frameworks.A correlation has been established between the different synthetic strategies and catalytic activities.The [PW]-OMS-2 is the most highly effective and stable over than[PW]/OMS-2 and OMS-2 itself for the organic pollutants removal.This may be caused not only by the synergetic effect of [PW] and OMS-2,but also by doping W into frameworks of OMS-2.Therefore,this work provides a new environmentally-friendly and heterogeneous PMS activator and it may be put into practice to degrade organic pollutants.  相似文献   

10.
Environmental pollution and its drastic effects on human and animal health have urged governments to implement strict policies to minimize damage. The first step in applying such policies is to find reliable methods to detect pollution in various media, including water, food, soil, and air. In this regard, various approaches such as spectrophotometric, chromatographic, and electrochemical techniques have been proposed. To overcome the limitations associated with conventional analytical methods, microfluidic devices have emerged as sensitive technologies capable of generating high content information during the past few years. The passage of contaminant samples through the microfluidic channels provides essential details about the whole environment after detection by the detector. In the meantime, artificial intelligence is an ideal means to identify, classify, characterize, and even predict the data obtained from microfluidic systems. The development of microfluidic devices with integrated machine learning and artificial intelligence is promising for the development of next-generation monitoring systems. Combination of the two systems ensures time efficient setups with easy operation. This review article is dedicated to the recent developments in microfluidic chips coupled with artificial intelligence technology for the evolution of more convenient pollution monitoring systems.  相似文献   

11.
过一硫酸盐催化活化技术因其可产生强氧化性活性氧化物种,可快速氧化降解并矿化有机污染物的优异性能而备受关注.本文成功制备了亚微米级Cu0/Fe3O4复合物,发现其能多相催化过一硫酸盐产生单线态氧降解有机污染物.首先,以CuCl2·2H2O,FeCl2·4H2O和FeCl3·6H2O为铜源和铁源,水合肼为还原剂,采用水热法在180oC反应24 h制备了亚微米级磁性Cu0/Fe3O4复合物.表征结果显示,所制材料为Cu0和Fe3O4的复合物,颗粒大小约为220 nm;单一相Cu0和Fe3O4晶体粒径分别为33.8和106.2 nm,而Cu0/Fe3O4复合物中Cu0和Fe3O4晶体粒径分别减为20.8和31.9 nm.这表明Cu0和Fe3O4复合降低了Cu0和Fe3O4晶体粒径,有利于Cu0和Fe3O4的分散.BET测试结果表明,Cu0/Fe3O4复合物比表面积为4.6 m2/g,与Cu0颗粒的(4.2 m2/g)相当,但远小于Fe3O4的(15.6 m2/g).制备的Cu0/Fe3O4复合物可有效催化过一硫酸盐产生单线态氧降解罗丹明B、亚甲基蓝、金橙II、苯酚和对氯酚.当Cu0/Fe3O4复合物的用量为0.1 g/L,过一硫酸盐浓度为0.5 mmol/L和初始pH为7时,Cu0/Fe3O4复合物可在30 min内完全降解20μmol/L的罗丹明B、亚甲基蓝、金橙II以及0.1 mmol/L的苯酚和对氯酚.对比试验显示,在相同条件下,Cu0和Fe3O4颗粒分别可以降解28%和20%的罗丹明B.这表明Cu0/Fe3O4复合物中的Cu0和Fe3O4晶体在催化过一硫酸盐降解污染物的反应中具有协同作用,这主要来源于Cu0/Fe3O4复合物中Cu0和Fe3O4的晶体粒径变小和更好的分散.采用分光光度法测定了降解反应液中铜和铁离子的溶出量.当Cu0/Fe3O4复合物的用量为0.1 g/L,过一硫酸盐浓度为0.5 mmol/L和初始pH为7时,反应60 min后,降解液中铜和铁离子的浓度分别为0.22和0.1 mg/L,仅占复合物中总铜和总铁量的1.1%和0.2%,表明Cu0/Fe3O4复合物具有较强的化学稳定性.所制Cu0/Fe3O4复合物具有超顺磁性,借助磁场实现快速分离回收,可循环利用五次,表明其优越的催化稳定性.通过加入乙醇和叠氮化钠,考察了Cu0/Fe3O4复合物催化活化过一硫酸盐体系中的活性氧化物种.发现100 mmol/L乙醇的加入对污染物的降解无明显影响,而加入同等量的叠氮化钠可完全抑制污染物的降解,表明Cu0/Fe3O4复合物催化活化过一硫酸盐产生的主要活性氧物种为单线态氧.采用电子顺磁共振谱进一步证实了单线态氧的生成.基于以上研究,Cu0/Fe3O4复合物催化活化过一硫酸盐的机理为Cu0/Fe3O4作为一个电子媒介加速过一硫酸盐和污染物之间的电子转移,从而导致污染物被快速降解.该反应机理不同于常见的金属催化过一硫酸盐产生硫酸根和羟自由基的反应机理.我们推测,电导性优良的Cu0在此催化反应中起着关键性作用.本催化方法可作为一种绿色的氧化技术用于环境污染物的氧化降解处理.  相似文献   

12.
A novel route to facilitate the degradation of dye pollutants, a class of well-known recalcitrant organic pollutants, is reported. This new approach is based on a natural polyelectrolyte microshell that was preformed by the alternate adsorption of the anionic alginate sodium (ALG) and the cationic chitosan (CHI) onto weakly cross-linked melamine formaldehyde (MF) colloidal particles, and the subsequent sacrifice of MF templates in 0.1 M HCl. The as-prepared microshells could accumulate rhodamine B (RhB) and fluorescein (Flu) efficiently in water under ordinary conditions by means of a simple mixing process. The photodegradation of the accumulated RhB and Flu was examined in the presence of Fe3+ and H2O2 under visible radiation. The accumulated RhB and Flu are rapidly degraded and the assembled shells maintain their intact spherical shape throughout the photoreaction process. Results of recycling degradation experiments and the photochemical behavior of the shells, as demonstrated by confocal laser scanning microscopy (CLSM), UV-visible spectroscopy, and scanning force microscopy (SFM), further suggest that the constructed shells may be used as environmentally friendly microcontainers for the elimination of dyes in wastewater.  相似文献   

13.
Most industrial activities emit atmospheric pollutants nowadays. Many of these activities are performed in stationary hotspots such as chemical industry facilities, wastewater and solid waste treatment plants. Other important stationary sources of gas pollutants include facilities for mining, intensive livestock farming and rendering. Volatile organic compounds (VOCs), odours and greenhouse gases are released from the above-mentioned sources, leading to issues related to global warming, health disorders and complaints to public administrations due to odour annoyance. When the release of atmospheric pollutants cannot be prevented, the sort of pollutants, their concentration and the flow rate of the waste gas emission must be characterised in order to select the most cost-effective treatment technology. Over the last decades, the use of biological technologies for the treatment of atmospheric pollutants has gradually increased due to their proven robustness, high cost-effectiveness and low environmental impact. The fundamentals of the most commonly implemented biological technologies in industrial applications (biofiltration, biotrickling filtration, bioscrubbing and activated sludge diffusion) are described in this work. The latest findings in the field of biological technologies for air pollution control are also presented and discussed.  相似文献   

14.
A sensitive, fast and cheap sensor for quantitative determination of carbaryl pesticide using amperometric acetylcholinesterase (AChE) sensor based on electrochemically deposited chitosan was reported. From a mildly acidic chitosan solution, a chitosan film is electrochemically deposited on Au electrode surface via a negative voltage bias, leading to a stable AChE sensor. The characteristics of the deposited layer were observed to be dependent upon the deposition time, pH, and the chitosan concentration. Fourier-transform infrared spectra proved that the immobilized enzyme could preserve their native structure due to the excellent biocompatibility and non-toxicity of chitosan. Under the optimal experimental conditions, the carbaryl inhibition on AChE-CHIT/Au was proportional to its concentration in two ranges, from 0.005 to 0.1 μg/ml and 0.5 to 5 μg/ml, with the correlation coefficients of 0.9966 and 0.9982, respectively. The detection limit was 0.003 μg/ml taken as the concentration equivalent to a 10% decrease in signal. The determination of carbaryl in garlic samples obtained from export of farm base showed acceptable accuracy. The developed sensor exhibited good fabrication reproducibility and acceptable stability, which provided a new promising tool for pesticide analysis.  相似文献   

15.
Continuous flow (CF) chemical hydride generation (CHG) and electrochemical hydride generation (ECHG) directly coupled to a novel 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma exiting a microstrip wafer has been developed for the emission spectrometric determination of As and Sb using a miniaturized optical fiber spectrometer and a CCD-array detector. The experimental conditions for both procedures were optimized with respect to the relative net intensities of the As I 228.8 nm and Sb I 252.8 nm lines and their signal-to-background intensity ratios. Additionally, the susceptibility to interferences from Cd, Co, Cr, Cu, Fe, Ni, Pb and Zn and other hydride-forming elements in the determination of As and Sb using the CHG and ECHG techniques was investigated in detail. Under the optimized conditions, it was found that ECHG is more prone to interferences compared to CHG. The detection limits (3σ) of As (6 ng mL−1) and Sb (7 ng mL−1) obtained for the ECHG-MSP-OES method are about three times lower than in the case of the CHG-MSP-OES method due to a two-fold lower amount of H2 introduced into the MSP in case of the ECHG, resulting in a better plasma stability and reduced background level. The linearity ranges for both calibration curves to a concentration of up to 5 μg mL−1 and a precision between 2% and 7% (2 μg mL−1 and 0.050 μg mL−1 of As and Sb, respectively) were found for both methods. The developed ECHG-MSP-OES method was validated for As through the analysis of a certified coal fly ash standard reference material (NIST SRM 1633a) after sample dissolution. The derived concentration (140 ± 8 μg g−1) was found to agree well with the certified data (145 ± 15 μg g−1). The method was also successfully applied to the analysis of both a galvanic bath sample, which contained Sb and was spiked with As, and a tap water sample spiked with both analytes. Recovery rates of 99-101% and a Sb concentration of 6.6 μg mL−1 in the galvanic bath sample were revealed. The latter value showed a good agreement with the data obtained from ICP-OES analysis, which was also used for validation purpose.  相似文献   

16.
Low temperature degradation and characterization of natural rubber   总被引:1,自引:0,他引:1  
Low temperature degradation of natural rubber was performed with potassium persulfate (K2S2O8, KPS) in the latex stage at 30 °C to accomplish a good processability of the rubber. Various grades of natural rubbers were used as a source rubber. Gel content, molecular weight and chemical structure of the rubbers were characterized by swelling method, size exclusion chromatography and 1H NMR spectroscopy, respectively. The well characterized natural rubber was subjected to oxidative degradation with KPS at 30 °C. Mooney viscosity decreased when the latex was degraded with 1.0 phr of KPS and it was dependent upon the amount of KPS. Molecular weight and gel content of the degraded natural rubber were about one-half as low as those of the source rubber. Chemical structure of the rubber was analyzed through Fourier transform infrared and 1H NMR spectroscopic methods. The degraded natural rubber was found to contain carbonyl and formyl groups as an evidence of the oxidative degradation. Tensile strength of a vulcanizate prepared from the degraded natural rubber was the same as that prepared from the source rubber, even though the gel content and the molecular weight of the degraded rubber were distinguished from those of the source rubber.  相似文献   

17.
A method has been developed for photometric detection of cyclodextrins (CD) in liquid chromatography using iodine (I2) generated electrochemically in-situ. Iodide ion in the mobile phase was electrochemically oxidized to I2 which was subsequently reacted with I, in an electrochemical flow cell, forming I3. The absorbance of I3 was found to be greatly enhanced when CD were present in the mobile phase. The absorbance enhancement was caused by the change in the mole fraction of I3, because of the inclusion reaction of I3 with CD. On the basis of this phenomenon, CD were detected by means of a photodiode-array UV–visible detector positioned downstream of the electrochemical flow cell. The signals were found to be linearly dependent on CD concentration. Because the formation constants of I3 with CD decrease in the order -CD>-CD>-CD, -CD was most detectable by the method. Detection limits were 1.0 mol L–1 for -CD, 65 mol L–1 for monoG1--CD, 100 mol L–1 for -CD, and 200 mol L–1 for -CD.  相似文献   

18.
以多巴胺、钼酸铵、碳酸氢铵为原料,通过一步煅烧法合成一种 MoO2@氮掺杂碳复合物(MoO2@CN),并利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、拉曼光谱(Raman)等对其进行表征。以卡马西平(CBZ)为目标污染物,以过一硫酸氢钾(PMS)为氧化剂,在温度为25 ℃、pH为6.5的条件下,MoO2@CN/PMS在12 min内对CBZ的去除率达99.2%,与商用MoO2相比,其表观速率常数kobs(0.393 min-1)是商用MoO2(0.016 4 min-1)的24.0倍,这主要是由于制备的MoO2@CN比商用MoO2具有更好的电子传输能力以及更大的比表面积。MoO2@CN在 pH为 2.5~10.5时均能有效降解 CBZ,而且对大多数染料、酚类化合物、抗生素等多种污染物均具有良好的降解性能。此外,MoO2@CN/PMS在60 min内对CBZ的总有机碳(TOC)去除率高达74.0%。电子顺磁共振波谱(EPR)和自由基猝灭实验显示MoO2@CN/PMS体系中主要起作用是硫酸根自由基(SO4·-)和羟基自由基(·OH)。更有意思的是,在Fe2+/PMS体系加入MoO2@CN后,其催化降解CBZ的性能显著增强,kobs(1.25 min-1)是单独Fe2+/PMS体系(0.079 7 min-1)的15.7倍,这主要归因于MoO2@CN的引入加快了Fe3+到Fe2+的转变,导致更多·OH的生成。  相似文献   

19.
以多巴胺、钼酸铵、碳酸氢铵为原料,通过一步煅烧法合成一种MoO2@氮掺杂碳复合物(MoO2@CN),并利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、拉曼光谱(Raman)等对其进行表征。以卡马西平(CBZ)为目标污染物,以过一硫酸氢钾(PMS)为氧化剂,在温度为25℃、pH为6.5的条件下,MoO2@CN/PMS在12 min内对CBZ的去除率达99.2%,与商用MoO2相比,其表观速率常数kobs(0.393 min-1)是商用MoO2(0.016 4 min-1)的24.0倍,这主要是由于制备的MoO2@CN比商用MoO2具有更好的电子传输能力以及更大的比表面积。MoO2@CN在pH为2.5~10.5时均能有效降解CBZ,而且对大多数染料、酚类化合物、抗生素等多种污染物均具有良好的降解性能。此外,MoO  相似文献   

20.
In this mini-review, the homogeneous and heterogeneous EAOPs-oxidant processes were summarized. The reaction mechanisms of different EAOPs combined with different oxidants are elucidated in detail, as well as the synergistic effect for improving the treatment efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号