共查询到20条相似文献,搜索用时 17 毫秒
1.
The growth of ultrathin ZrO2 films on Si(1 0 0)-(2 × 1) and Si(1 1 1)-(7 × 7) has been studied with core level photoelectron spectroscopy and X-ray absorption spectroscopy. The films were deposited sequentially by chemical vapor deposition in ultra-high vacuum using zirconium tetra-tert-butoxide as precursor. Deposition of a > 50 Å thick film leads in both cases to tetragonal ZrO2 (t-ZrO2), whereas significant differences are found for thinner films. On Si(1 1 1)-(7 × 7) the local structure of t-ZrO2 is not observed until a film thickness of 51 Å is reached. On Si(1 0 0)-(2 × 1) the local geometric structure of t-ZrO2 is formed already at a film thickness of 11 Å. The higher tendency for the formation of t-ZrO2 on Si(1 0 0) is discussed in terms of Zr-O valence electron matching to the number of dangling bonds per surface Si atom. The Zr-O hybridization within the ZrO2 unit depends furthermore on the chemical composition of the surrounding. The precursor t-butoxy ligands undergo efficient C-O scission on Si(1 0 0), leaving carbonaceous fragments embedded in the interfacial layer. In contrast, after small deposits on Si(1 1 1) stable t-butoxy groups are found. These are consumed upon further deposition. Stable methyl and, possibly, also hydroxyl groups are found on both surfaces within a wide film thickness range. 相似文献
2.
Chemisorption and thermal decomposition of metallorganic chemical vapor deposition precursors, (t-BuN)2W(NHBu-t)2, bis(tert-butylimido)bis(tert-butylamido)tungsten (BTBTT) and (t-BuN)2W(NEt2)2, bis(tert-butylimido)bis(diethylamido)tungsten (BTBDT), on Cu(1 1 1) have been investigated by means of thermal desorption spectroscopy (TDS) and synchrotron-based X-ray photoelectron spectroscopy (SR-XPS) under ultrahigh vacuum conditions. The precursors remain intact upon chemisorption on Cu(1 1 1) at 100 K, and at 300 K both precursors decompose readily via the characteristic hydride abstraction/elimination pathways to produce two stable surface intermediates for each precursor. For BTBTT, one species is W(=NBu-t)3 and the other is proposed to be a bridged amido complex, [(t-BuN)2W(μ-NBu-t)]2. In comparison, a W-imine complex and a W-N-C metallacycle are two intermediates produced from BTBDT. Annealing toward 800 K further decomposes the intermediates and the detectable desorption species are completely derived from the ligands. The desorption products from BTBTT include t-butylamine generated from α-H abstraction, isobutylene from γ-H elimination, acetonitrile from β-methyl elimination, and molecular hydrogen. In addition to these desorption species, BTBDT produces hydrogen cyanide and imine (EtN = CHMe) via β-H elimination, not possible with BTBTT due to the absence of β-H in the ligands. Eventually, tungsten nitrides incorporating oxygen atoms and a small amount of graphitic carbons are formed and the stoichiometry is approximated as WN1.5O0.1. Oxygen incorporation, driven by a large oxide formation enthalpy, is sensitively dependent on the moisture exposure in UHV environment. 相似文献
3.
The self-assembled monolayers prepared from 1-dodecanethiol (C12SH) or S-dodecylthiosulfate (Bunte salt, C12SSO3Na) have been characterised on polycrystalline gold and platinum surfaces and on Pt(1 1 1). Contact angle and impedance measurements show that the film quality decreases in the order Au/C12SH > Pt/C12SH ∼ Au/C12SSO3Na > Pt/C12S SO3Na. XPS measurements show that the S-SO3 bond of organic thiosulfates is broken on platinum surfaces and the state of the surface-bound sulfur is indistinguishable from that of thiolate. On platinum three sulfur species are formed upon SAM formation and we suggest that the catalytic activity of platinum is responsible for their existence in pristine monolayers. 相似文献
4.
The growth and thermal stability of ultrathin ZrO2 films on the Si-rich SiC(0 0 0 1)-(3 × 3) surface have been explored using photoelectron spectroscopy (PES) and X-ray absorption spectroscopy (XAS). The films were grown in situ by chemical vapor deposition using the zirconium tetra tert-butoxide (ZTB) precursor. The O 1s XAS results show that growth at 400 °C yields tetragonal ZrO2. An interface is formed between the ZrO2 film and the SiC substrate. The interface contains Si in several chemically different states. This gives evidence for an interface that is much more complex than that formed upon oxidation with O2. Si in a 4+ oxidation state is detected in the near surface region. This shows that intermixing of SiO2 and ZrO2 occurs, possibly under the formation of silicate. The alignment of the ZrO2 and SiC band edges is discussed based on core level and valence PES spectra. Subsequent annealing of a deposited film was performed in order to study the thermal stability of the system. Annealing to 800 °C does not lead to decomposition of the tetragonal ZrO2 (t-ZrO2) but changes are observed within the interface region. After annealing to 1000 °C a laterally heterogeneous layer has formed. The decomposition of the film leads to regions with t-ZrO2 remnants, metallic Zr silicide and Si aggregates. 相似文献
5.
Fred S. Thomas 《Surface science》2004,573(2):169-175
Pt/Pd anode catalysts for direct formic acid polymer electrolyte membrane fuel cells outperform both Pt and Pd in steady-state electrooxidation trials. Temperature-programmed desorption (TPD) experiments in ultra-high vacuum (UHV) were performed with 1 L formic acid on clean Pt(1 1 0), 0.6 monolayers Pd/Pt(1 1 0), and multilayer Pd/Pt(1 1 0) to gain a better understanding of the effect of Pd additions to a Pt catalyst. Both dehydration and dehydrogenation of formic acid occur on all three surfaces. As Pd coverage increases, the activation barrier for formate decomposition to CO2 decreases, but the effect does not explain the unusual activity of Pt/Pd in the electrochemical environment. 相似文献
6.
Eldad Herceg 《Surface science》2006,600(19):4563-4571
The formation of a well-ordered p(2 × 2) overlayer of atomic nitrogen on the Pt(1 1 1) surface and its reaction with hydrogen were characterized with reflection absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The p(2 × 2)-N overlayer is formed by exposure of ammonia to a surface at 85 K that is covered with 0.44 monolayer (ML) of molecular oxygen and then heating to 400 K. The reaction between ammonia and oxygen produces water, which desorbs below 400 K. The only desorption product observed above 400 K is molecular nitrogen, which has a peak desorption temperature of 453 K. The absence of oxygen after the 400 K anneal is confirmed with AES. Although atomic nitrogen can also be produced on the surface through the reaction of ammonia with an atomic, rather than molecular, oxygen overlayer at a saturation coverage of 0.25 ML, the yield of surface nitrogen is significantly less, as indicated by the N2 TPD peak area. Atomic nitrogen readily reacts with hydrogen to produce the NH species, which is characterized with RAIRS by an intense and narrow (FWHM ∼ 4 cm−1) peak at 3322 cm−1. The areas of the H2 TPD peak associated with NH dissociation and the XPS N 1s peak associated with the NH species indicate that not all of the surface N atoms can be converted to NH by the methods used here. 相似文献
7.
The surface chemistry of NO and NO2 on clean and oxygen-precovered Pt(1 1 0)-(1 × 2) surfaces were investigated by means of high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). At room temperature, NO molecularly adsorbs on Pt(1 1 0), forming linear NO(a) and bridged NO(a). Coverage-dependent repulsive interactions within NO(a) drive the reversible transformation between linear and bridged NO(a). Some NO(a) decomposes upon heating, producing both N2 and N2O. For NO adsorption on the oxygen-precovered surface, repulsive interactions exist between precovered oxygen adatoms and NO(a), resulting in more NO(a) desorbing from the surface in the form of linear NO(a). Bridged NO(a) experiences stronger repulsive interactions with precovered oxygen than linear NO(a). The desorption activation energy of bridged NO(a) from oxygen-precovered Pt(1 1 0) is lower than that from clean Pt(1 1 0), but the desorption activation energy of linear NO(a) is not affected by the precovered oxygen. NO2 decomposes on Pt(1 1 0)-(1 × 2) surface at room temperature. The resulted NO(a) (both linear NO(a) and bridged NO(a)) and O(a) repulsively interact each other. Comparing with NO/Pt(1 1 0), more NO(a) desorbs from NO2/Pt(1 1 0) as linear NO(a), and both linear NO(a) and bridged NO(a) exhibit lower desorption activation energies. The reaction pathways of NO(a) on Pt(1 1 0), desorption or decomposition, are affected by their repulsive interactions with coexisting oxygen adatoms. 相似文献
8.
The adsorption and decomposition of NO on a K-deposited Pd(1 1 1) surface were investigated using X-ray photoelectron spectroscopy, infrared reflection absorption spectroscopy, and temperature-programmed desorption. For the K-deposited Pd(1 1 1) surface, two different NO adsorption sites were observed in addition to the Pd site. On the clean Pd(1 1 1) surface, the adsorption of NO was purely molecular and reversible, but on the K-deposited surface, the adsorbed NO decomposed at two different temperatures, 530 and 610 K. These results indicate that the NO adsorption and decomposition sites were newly created by the deposition of K onto the Pd(1 1 1) surface. 相似文献
9.
Kevin Summers 《Surface science》2007,601(6):1443-1455
The surface reactions of 2-iodopropane ((CH3)2CHI) on gallium-rich GaAs(1 0 0)-(4 × 1), was studied by temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). CH3CHICH3 adsorbs molecularly at 120 K but dissociates below room temperature to form chemisorbed 2-propyl ((CH3)2CH) and iodide (I) species. Thermal activation causes desorption of the molecular species at 240 K, and this occurs in competition with the further reactions of the (CH3)2CH and I chemisorbed species. Self-coupling of the (CH3)2CH results in the formation of 2,3-dimethylbutane ((CH3)2CH-CH(CH3)2) at 290 K. β-Hydride elimination in (CH3)2CH yields gaseous propene (CH3CHCH2) at 550 K while reductive elimination reactions of (CH3)2CH with surface hydrogen yields propane (CH3CH2CH3) at 560 K. Recombinative desorption of the adsorbed hydrogen as H2 also occurs at 560 K. We observe that the activation barrier to carbon-carbon bond formation with 2-propyls on GaAs(1 0 0) is much lower than that in our previous investigations involving ethyl and 1,1,1-trifluoroethyl species where the β-elimination process was more facile. The difference in the surface chemistry in the case of 2-propyl species is attributable to its rigid structure resulting from the bonding to the surface via the second carbon atom, which causes the methyl groups to be further away from the surface than in the case of linear ethyl and 1,1,1-trifluoroethyl species. The β-hydride and reductive elimination processes in the adsorbed 2-propyl species thus occurs at higher temperatures, and a consequence of this is that GaI desorption, which is expected to occur in the temperature range 550-560 K becomes suppressed, and the chemisorbed iodine leaves the surface as atomic iodine. 相似文献
10.
We have measured W and Pt 4f7/2 core-level photoemission spectra from interfaces formed by ultrathin Pt layers on W(1 1 0), completing our core-level measurements of W(1 1 0)-based bimetallic interfaces involving the group-10 metals Ni, Pd, and Pt. With increasing Pt coverage the sequence of W spectra can be described using three interfacial core-level peaks with binding-energy (BE) shifts (compared to the bulk) of −0.220 ± 0.015, −0.060 ± 0.015, and +0.110 ± 0.010 eV. We assign these features to 1D, 2D pseudomorphic (ps), and 2D closed-packed (cp) Pt phases, respectively. For ∼1 ps ML the Pt 4f7/2 BE is 71.40 ± 0.02 eV, a shift of +0.46 ± 0.09 eV with respect to the BE of bulk Pt metal. The W 4f7/2 core-level shifts induced by all three adsorbates are semiquantitatively described by the Born-Haber-cycle based partial-shift model of Nilsson et al. [39]. As with Ni/W(1 1 0), the difference in W 4f7/2 binding energies between ps and cp Pt phases has a large structural contribution. The Pt 4f lineshape is consistent with a small density of states at the Fermi level, reflective of the Pt monolayer having noble-metal-like electronic structure. 相似文献
11.
I. Nakamura 《Surface science》2006,600(16):3235-3242
Reactions between NO and CO on Rh(1 1 1) surfaces were investigated using infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. NO adsorbed on the fcc, atop, and hcp sites in that order, whereas CO adsorbed initially on the atop sites and then on the hollow (fcc + hcp) sites. The results of experiments with NO exposure on CO-preadsorbed Rh(1 1 1) surfaces indicated that the adsorption of NO on the hcp sites was inhibited by preadsorption of CO on the atop sites, and NO adsorption on the atop and fcc sites was inhibited by CO preadsorbed on each type of site, which indicates that NO and CO competitively adsorbed on Rh(1 1 1). From a Rh(1 1 1) surface with coadsorbed NO and CO, N2 was produced from the dissociation of fcc-NO, and CO2 was formed by the reaction of adsorbed CO with atomic oxygen from dissociated fcc-NO. The CO2 production increased remarkably in the presence of hollow-CO. Coverage of fcc-NO and hollow-CO on Rh(1 1 1) depended on the composition ratio of the NO/CO gas mixture, and a gas mixture with NO/CO ? 1/2 was required for the co-existence of fcc-NO and hollow-CO at 273 K. 相似文献
12.
Z. Dohnálek 《Surface science》2006,600(17):3461-3471
Thin Pd films (1-10 monolayers, ML) were deposited at 35 K on a Pt(1 1 1) single crystal and on an oxygen-terminated FeO(1 1 1) monolayer supported on Pt(1 1 1). Low energy electron diffraction, Auger electron spectroscopy, and Kr and CO temperature programmed desorption techniques were used to investigate the annealing induced changes in the film surface morphology. For growth on Pt(1 1 1), the films order upon annealing to 500 K and form epitaxial Pd(1 1 1). Further annealing above 900 K results in Pd diffusion into the Pt(1 1 1) bulk and Pt-Pd alloy formation. Chemisorption of CO shows that even the first ordered monolayer of Pd on Pt(1 1 1) has adsorption properties identical to bulk Pd(1 1 1). Similar experiments conducted on FeO(1 1 1) indicate that 500 K annealing of a 10 ML thick Pd deposit also yields ordered Pd(1 1 1). In contrast, annealing of 1 and 3 ML thick Pd films did not result in formation of continuous Pd(1 1 1). We speculate that for these thinner films Pd diffuses underneath the FeO(1 1 1). 相似文献
13.
The adsorption and thermal decomposition of N-methylaniline (NMA) on the Pt(1 1 1) surface has been studied with reflection absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). NMA adsorbs molecularly at 85 K through the nitrogen lone pair and is stable up to 300 K. At temperatures of 300–350 K it converts to two or more surface intermediates including the N-methyleneaniline (NMEA) species. This NMEA intermediate dissociates upon annealing to 450 K, and further annealing leads to the desorption of HCN and H2, leaving only C on the surface at 800 K. 相似文献
14.
The adsorption and surface reactions of propyl iodide on clean and potassium-modified Mo2C/Mo(1 0 0) surfaces have been investigated by thermal desorption spectroscopy (TPD), X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy (HREELS) in the 100-1200 K temperature range. This work is strongly related to the better understanding of the catalytic effect of Mo2C in the conversion of hydrocarbons. Potassium was found to be an effective promoter: it induced the rupture of C-I bond in the adsorbed C3H7I even at 100 K. The extent of C-I bond scission varied approximately linearly with the concentration of K coverage at the adsorption temperature of 100 K. As revealed by HREELS and TPD measurements the primary products of the dissociation are C3H7 and I. The former one was stabilized by potassium and underwent dehydrogenation and hydrogenation to give propene and propane. The desorption of both compounds is reaction-limited process. A fraction of propyl groups was converted into di-σ-bonded propene, which was stable up to ∼380 K. The coupling reaction of propyl species was also facilitated by potassium and resulted in the formation of hexane and hexene with Tp ∼ 230-250 K. Hydrogen was released with Tp = 390 K, indicative of a desorption limited process. The effect of potassium was explained by the extended electron donation to adsorbed propyl iodide in one hand, and by the direct interaction between potassium and I on the other hand. This was reflected by the shift of the desorption of potassium from the coadsorbed layer at and above 1.0 ML to higher temperature, and by the coincidal Tp values (∼700 K) of potassium and iodine. The formation of KI was also supported by the appearance of a loss feature at 650 cm−1 in the HREEL spectra attributed to a phonon mode of KI. 相似文献
15.
The thermal chemistry of perfluoroethyl iodide (C2F5I) adsorbed on Cu(1 1 1) has been investigated by temperature-programmed reaction/desorption (TPR/D), reflection-absorption infrared spectroscopy (RAIRS), and X-ray photoelectron spectroscopy (XPS). I 4d and F 1s XPS spectra show that dissociative adsorption of C2F5I to form the surface-bound perfluroethyl (Cu-C2F5) moieties occurs at very low temperature (T < 90 K), while the C-F bond cleavage in adsorbed perfluroethyl (Cu-C2F5) begins at ca. 300 K. XPS and TPR/D studies further reveal that the reactions of βCF3αCF2(ad) on Cu(1 1 1) are strongly dependent on the surface coverage. At high coverages (?0.16 L exposure), the adsorbed perfluroethyl (Cu-C2F5) evolves, via α-F elimination, into the surface-bound tetrafluoroethylidene moieties (CuCF-CF3) followed by a dimerization step to form octafluoro-2-butene (CF3CFCFCF3) at 315 K as gas product. The surface-bound (Cu-C2F5) decomposes preferentially, at low coverages (?0.04 L), via consecutive α-F abstraction to afford intermediate, trifluoroethylidyne (CuCCF3), resulting in the final coupling reaction to yield hexafluoro-2-butyne (CF3CCCF3) at 425 K. However, at middle coverages (ca. 0.08-0.16 L exposure), the adsorbed perfluroethyl (Cu-C2F5) first experiences an α-F elimination and then prefers to loss the second F from β position to yield the intermediate of Cu-CF2-CFCu (μ-η,η-perfluorovinyl), which may further evolve into hexafluorocyclobutene (CF2CFCFCF2) at 350 K through cyclodimerization reaction. Our results have also shown that the surface reactions to yield the products, CF3CFCFCF3 and CF3CCCF3, obey first-order kinetics, whereas the formation of CF2CFCFCF2 follows second-order kinetics. 相似文献
16.
Haibo Zhao 《Surface science》2004,573(3):413-425
Adsorption and desorption of trans-decahydronaphthalene (C10H18) and bicyclohexane (C12H22) can be used to probe important aspects of non-specific dehydrogenation leading to surface carbon accumulation and establish better estimates of activation energies for C-H bond cleavage at Pt-Sn alloys. This chemistry was studied on Pt(1 1 1) and the (2 × 2)-Sn/Pt(1 1 1) and (√3 × √3)R30°-Sn/Pt(1 1 1) surface alloys by using temperature programmed desorption (TPD) mass spectroscopy and Auger electron spectroscopy (AES). These hydrocarbons are reactive on Pt(1 1 1) surfaces and fully dehydrogenate at low coverages to produce H2 and surface carbon during TPD. At monolayer coverage, 87% of adsorbed C10H18 and 75% C12H22 on Pt(1 1 1) desorb with activation energies of 70 and 75 kJ/mol, respectively. Decomposition of C10H18 is totally inhibited during TPD on these Sn/Pt(1 1 1) alloys and decomposition of C12H22 is reduced to 10% of the monolayer coverage on the (2 × 2)-Sn/Pt(1 1 1) alloy and totally inhibited on the (√3 × √3)R30°-Sn/Pt(1 1 1) alloy. C10H18 and C12H22 are more weakly chemsorbed on these two alloys compared to Pt(1 1 1) and these molecules desorb in narrow peaks characteristic of each surface with activation energies of 65 and 73 kJ/mol on the (2 × 2) alloy and 60 and 70 kJ/mol on the (√3 × √3)R30°-Sn/Pt(1 1 1) alloy, respectively. Alloyed Sn has little influence on the monolayer saturation coverage of these two molecules, and this is decreased only slightly on these two Sn/Pt(1 1 1) alloys. The use of these two probe molecules enables an improved estimate of the activation energy barriers E* to break aliphatic C-H bonds in alkanes on Sn/Pt alloys; E* = 65-73 kJ/mol on the (2 × 2)-Sn/Pt(1 1 1) alloy and E* ? 70 kJ/mol on the (√3 × √3)R30°-Sn/Pt(1 1 1) alloy. 相似文献
17.
Ultra-thin films of para-hexaphenyl (6P) were prepared on muscovite mica (0 0 1) utilizing organic molecular beam deposition (OMBD) under well defined ultra high vacuum (UHV) conditions. The 6P growth characteristics were studied as a function of substrate temperature and substrate surface conditions. For the initial state of layer growth, thermal desorption spectroscopy (TDS) was used to verify the existence of a wetting layer. In this monomolecular continuous wetting layer, the molecules lie flat on the surface and are rather strongly bonded. For thicker films, in-situ X-ray photoelectron spectroscopy (XPS) in combination with (TDS) was applied to reveal the kinetics of the layer growth. Ex-situ atomic-force microscopy (AFM) was used to determine the film morphology. In particular, the influence of surface modifications (carbon contamination, sputtering) on 6P layer growth was investigated. XPS and low energy electron diffraction (LEED) were used to characterize the mica surface before the film deposition. TDS and AFM revealed a considerable change in film growth, from a needle-like island growth of flat laying molecules on top of the wetting layer (for the air cleaved mica) to terrace-like film growth of standing molecules, without a wetting layer (after surface modifications). 相似文献
18.
H.Y. Ho 《Surface science》2007,601(3):615-621
The initial growth and alloy formation of ultrathin Co films deposited on 1 ML Ni/Pt(1 1 1) were investigated by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and ultraviolet photoelectron spectroscopy (UPS). A sequence of samples of dCo Co/1 ML Ni/Pt(1 1 1) (dCo = 1, 2, and 3 ML) were prepared at room temperature, and then heated up to investigate the diffusion process. The Co and Ni atoms intermix at lower annealing temperature, and Co-Ni intermixing layer diffuses into the Pt substrate to form Ni-Co-Pt alloys at higher annealing temperature. The diffusion temperatures are Co coverage dependent. The evolution of UPS with annealing temperatures also shows the formation of surface alloys. Some interesting LEED patterns of 1 ML Co/1 ML Ni/Pt(1 1 1) show the formation of ordered alloys at different annealing temperature ranges. Further studies in the Curie temperature and concentration analysis, show that the ordered alloys corresponding to different LEED patterns are NixCo1−xPt and NixCo1−xPt3. The relationship between the interface structure and magnetic properties was investigated. 相似文献
19.
K. Habermehl-?wirzeń 《Surface science》2004,573(2):183-190
CO adsorption on a sulfur covered cobalt surface at 185 K has been studied using XPS, TDS, LEED, and WF measurements. As in the case of CO adsorption on the clean Co(0 0 0 1) surface, CO adsorbs and desorbs molecularly and no dissociation was observed. The saturation coverage of CO decreases linearly from 0.54 ML to 0.27 ML when the S pre-coverage increases to 0.25 ML. The WF increased during CO adsorption, but did not reach the value obtained for CO adsorption on the clean surface. The smaller work function change is explained by the reduced adsorption of CO on the sulfur-precovered surface. A reduction in the activation energy of desorption for CO from 113 kJ/mol to 88 kJ/mol was observed indicating weaker bonding of the CO molecules to the surface. The behavior of the CO/S/Co(0 0 0 1) system was explained by a combination of steric and electronic effects. 相似文献
20.
The growth, and reactivity of monolayer V2O5 films supported on TiO2(1 1 0) produced via the oxidation of vapor-deposited vanadium were studied using X-ray photoelectron spectroscopy and temperature programmed desorption (TPD). Oxidation of vapor-deposited vanadium in 10−7 Torr of O2 at 600 K produced vanadia films that contained primarily V3+, while oxidation in 10−3 Torr at 400 K produced films that contained primarily V5+. The reactivity of the supported vanadia layers for the oxidation of methanol to formaldehyde was studied using TPD. The activity for this reaction was found to be a function of the oxidation state of the vanadium cations in the film. 相似文献