首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we have investigated the performance of a nano-optical directional coupler based on gap plasmon waveguides. The coupler consists of two waveguides having a localized coupled plasmon propagating between two semi-cylindrical surfaces. It is clear that the wave number and correspondingly light confinement in the waveguides are the most effective parameters in coupling strength and coupling length. Some expected and unexpected dependencies of the coupling length on the structure parameters are shown. Simulation results of the coupler obtained by the compact-2D finite-difference time-domain (FDTD) method comply with those derived by an analytic method with the aid of the finite-element frequency-domain (FEFD) software package of COMSOL. The considered structures, because of their small coupling length and dimensions are appropriate for use in optical integrated circuits.  相似文献   

2.
A novel design of polarization splitter based on the complete photonic band gap has been proposed in this paper. The proposed Photonic Band Gap (PBG) polarization splitter is formed by two photonic crystal waveguides composed of dielectric rods in air in honeycomb structure for which complete photonic band gap is obtained using the plane wave expansion (PWE) method. The splitting properties (i.e. coupling length, extinction ratio and insertion loss) of PBG polarization splitter have numerically been investigated using the finite difference time domain (FDTD) method. It has been shown that polarization splitter of length as small as 32 μm can be designed at λ=1.55 μm. The proposed polarization splitter offers a large bandwidth of 120 nm.  相似文献   

3.
We have investigated the performance of a nano-optical directional coupler based on gap plasmon waveguides. The coupler consists of two waveguides having a localized coupled plasmon propagating between two semi-cylindrical surfaces. After introducing a fundamental mode of studied waveguides, effects of the structure parameters on the coupling length are shown. Simulation results of the coupler obtained by the compact-2D finite-difference time-domain (FDTD) method comply with those derived by an analytic method with the aid of the finite-element frequency-domain (FEFD) software package of COMSOL.  相似文献   

4.
Here, we demonstrate that efficient nano-optical couplers can be developed using closely spaced gap plasmon waveguides in the form of two parallel nano-sized rectangular slots in a thin metal film or membrane. Using the rigorous numerical finite-difference and finite element algorithms, we investigate the physical mechanisms of coupling between two neighboring gap plasmon waveguides and determine typical coupling lengths for different structural parameters of the coupler. Special attention is focused onto the analysis of the effect of such major coupler parameters, such as thickness of the metal film/membrane, slot width, and separation between the plasmonic waveguides. Detailed physical interpretation of the obtained unusual dependencies of the coupling length on slot width and film thickness is presented based upon the energy consideration. The obtained results will be important for the optimization and experimental development of plasmonic sub-wavelength compact directional couplers and other nano-optical devices for integrated nanophotonics.  相似文献   

5.
数值模拟二维间隙表面等离子波导传输特性   总被引:2,自引:2,他引:0  
李继军  汪国平 《光子学报》2014,40(12):1793-1798
利用表面等离子激元的新颖特性,设计了二维间隙表面等离子波导.以这种结构为基础通过变形和组合形成90°直角弯曲波导、T型光功率分配器和光开光,采用时域有限差分法研究了它们的传输特性.结果表明:不同于介质光波导的弯曲损耗来自于辐射泄漏,90°直角弯曲间隙表面等离子波导的能量损耗主要来自于金属中的欧姆热损耗.在间隙达到40 nm以上后,当直行段的长度适当时,弯曲段的透射率较相同长度的直波导的透射率要大.T型光功率分配器在两输出波导的间隙宽度比达到0.6及以上时,不同于传统介质波导的分光原则,能量主要沿等效折射率较小的输出臂流出.当两输入光的相位反相时,T型光开关处于输出截止的状态,当两输入光的相位同相时,T型光开关处于输出导通的状态.所有波导间隙均小于衍射极限,实现了超衍射极限传播,可用于未来了超大规模集成光路中.  相似文献   

6.
以二维三角晶格光子晶体为研究对象,在该光子晶体中引入两行以一行耦合介质柱为间距的平行单模线缺陷波导.通过分析和研究光子晶体波导耦合结构的耦合和解耦合特性,发现在不同频率下耦合波导的耦合长度不同.利用平面波展开法和定向耦合原理计算了在不同入射光频率下,缺陷波导间耦合波导的耦合长度,设计了一种新型超微光子晶体波导耦合型三波长功分器,实现了归一化频率分别为0.369、0.394、0.435的光波的分束效果.采用时域有限差分法验证了该功分器具有很好的功率分配效果.本文结果有助于光子晶体新型滤波器、定向耦合器、波分复用器、偏振光分束器以及光开关等光子器件的研究.  相似文献   

7.
We investigate the energy transfer of surface plasmon polaritons (SPPs) based on adiabatic passage in a non-Hermitian waveguide composed of three coupled graphene sheets. The SPPs can completely transfer between two outer waveguides via the adiabatic dark mode as the waveguides are lossless and the coupling length is long enough. However, the loss of graphene can lead to breakdown of adiabatic transfer schemes. By utilizing the coupled mode theory, we propose three approaches to cancel the nonadiabatic coupling by adding certain gain or loss in respect waveguides. Moreover, the coupling length of waveguide is remarkably decreased. The study may find interesting application in optical switches on a deep-subwavelength scale.  相似文献   

8.
Integrated optic directional couplers consisting of curved waveguides are simulated analytically by solving the Riccati equation. The coupling coefficient between the curved waveguides with a parabolically varying gap and the condition of total power transfer between the waveguides are derived. In order to compute the overall coupling coefficient and hence the power distribution along the waveguides for Ti:LiNbO3 curved waveguide directional couplers, the coupling coefficient for straight waveguide couplers is computed for different gaps using the effective-index-based matrix method (EIMM). Finally, the power distribution in the curved waveguides along the length is computed. The method is mostly analytical except the effective-index method and is computationally simple.  相似文献   

9.
Two-dimensional (2D) slab photonic crystal waveguides (PCWGs) on silicon-on-insulator (SOI) wafer were designed and fabricated. Full photonic band gap, band gap guided mode, and index guided mode were observed by measuring the transmission spectra. Mini-stop-bands in the PCWG were simulated with different structure parameters. Coupling characteristics of PCWG were investigated theoretically considering the imperfections during the fabrication process. It was found that suppressing power reservation effect can realize both short coupling length and high coupling efficiency.  相似文献   

10.
The design of a vertical directional coupler between a three-dimensional plasmonic slot waveguide and a silicon waveguide is theoretically investigated in detail. It consists of two steps: the design of isolated plasmonic slot waveguide and silicon waveguide and the determination of the gap between the two waveguides and the length of a coupling region. The designed structure transfers 70.8% of the power carried by the silicon waveguide mode to the plasmonic slot waveguide mode when the gap is 150 nm and the coupling length is 2.14 μm. The wavelength dependence of our vertical directional coupler is also studied. The analysis shows that the amount of the transferred power changes slightly over a very wide wavelength range between 1.40 μm and 1.61 μm. Moreover, if we employ the fabrication technology for silicon photonics, it is quite tolerant to the variation of the length of its coupling section. Finally, the vertical directional coupler is considered for a polarizer.  相似文献   

11.
王本立  梁涵  李家方 《中国物理 B》2017,26(11):114103-114103
The propagation length of surface plasmon polaritons(SPPs) is intrinsically limited by the metallic ohmic loss that is enhanced by the strongly confined electromagnetic field. In this paper, we propose a new class of hybrid plasmonic waveguides(HPWs) that can support long-range SPP propagation while keeping subwavelength optical field confinement. It is shown that the coupling between the waveguides can be well tuned by simply varying the structural parameters. Compared with conventional HPWs, a larger propagation length as well as a better optical field confinement can be simultaneously realized. The proposed structure with better optical performance can be useful for future photonic device design and optical integration research.  相似文献   

12.

Integrated optic directional couplers consisting of curved waveguides are simulated analytically by solving the Riccati equation. The coupling coefficient between the curved waveguides with a parabolically varying gap and the condition of total power transfer between the waveguides are derived. In order to compute the overall coupling coefficient and hence the power distribution along the waveguides for Ti:LiNbO 3 curved waveguide directional couplers, the coupling coefficient for straight waveguide couplers is computed for different gaps using the effective-index-based matrix method (EIMM). Finally, the power distribution in the curved waveguides along the length is computed. The method is mostly analytical except the effective-index method and is computationally simple.  相似文献   

13.
In this paper, we have proposed a plasmonic splitter which is composed of a subwavelength slit and two different metal-insulator-metal (MIM) waveguides with periodic grooves. The slit is used to excite surface plasmon polaritons (SPPs) at certain wavelengths. By setting the SPPs resonance wavelengths of the slit as the Bragg wavelengths of MIM waveguides, the SPPs of different wavelengths are able to be confined and guided in the two different MIM waveguides. The numerical results of two-dimensional finite difference time domain (2D-FDTD) demonstrate that our proposed structure is capable of splitting light into two MIM waveguides.  相似文献   

14.
A 3-dB optical coupler (power splitter) based on a Y-junction waveguide with a channel profile of proton-exchanged lithium niobate has been modeled. Finite difference beam propagation method has been used to investigate light wave propagation in axially varying waveguides. It is found that the structure splits the input power equally at the Y-junction with an efficiency of 99% and an average excess loss ?0.04 dB. The novelty of the coupling structure proposed is its capability to function as a wavelength-independent 3-dB coupler while maintaining very low-power imbalance for widespread optical communication wavelengths of 1.3 and 1.55 µm.  相似文献   

15.
Yao Zhang 《Optics Communications》2010,283(10):2140-276
A polarization beam splitter with wide bandwidth and simple structure in air-hole-based periodic dielectric waveguides has been proposed and designed. Operation principle of the device is based on different directional coupling properties of beams in TE and TM polarizations in parallel periodic dielectric waveguides. Performances have been evaluated by a finite-difference time-domain simulation. Results show that the polarization beam splitter provides a wide bandwidth of 113 nm with both a high extinction ratio (higher than 21 dB) and a low insertion loss (less than 1.5 dB) for optical communication wavelengths at ∼1.55 μm. Moreover, the performances of the polarization beam splitter are insensitive to longitudinal alignment errors in the coupling region, which is desirable for device fabrication and practical application.  相似文献   

16.
Employing the surface plasmon polaritons (SPPs), a kind of coupled metallic squareness ring waveguide structure is presented. Its properties has been analyzed with the finite different time domain method and the coupling length has been derived from the coupled mode theory. It is demonstrated that the SPPs excited by the light with different wavelength will come out from different output port due to different coupling length. By appropriately designing the structure, it can be utilized to realize some optics devices such as multiple-wavelength sorter and beam splitter. This will break through the diffraction limit of traditional optical devices.  相似文献   

17.
In the paper, a novel power-splitting scheme based on two dimensional photonic crystal (2D PhC) is proposed. The structure can be divided into three sections, including the input waveguide, coupling region, and output region, and the latter two sections consist of two parallel waveguides placed in proximity. The operation principle of the splitter is that only one of the super-modes splitting from the directional coupler can propagate through coupling region in the frequency range of interest. The radius of air holes next to the guiding region in coupling region is increased to avoid the acute back reflection at the entrance to the input waveguide induced by the modes mismatch between the input waveguide and coupling region. While in output region, the radius of these corresponding air holes is also increased so that the two splitting super-modes have same propagation constants to avoid the coupling between the two output waveguides. Moreover, as the length of coupling region is varied, its influence on the splitting performance is discussed, and it is verified that the relationship between the splitter length and bandwidth has a trade-off.  相似文献   

18.
赵绚  刘晨  马会丽  冯帅 《物理学报》2017,66(11):114208-114208
基于波导间能量耦合效应的光子晶体功率分束器具有结构紧凑、带宽较宽、弯曲损耗低、分光角度大和不受外界电磁场干扰等优点.本文利用时域有限差分方法,理论研究了二维三角晶格光子晶体耦合波导的功率分束特性,设计得出了一种能够在宽频谱范围内针对不同频率区间实现不同分光比的功能器件.在此基础上通过改变耦合区介质柱形状以及输出分支波导与能量耦合波导的连接位置,最终针对三个相邻频率范围内的入射光信号,较好地实现了三均分、二均分、单一输出通道这3种能量分配输出模式.该功能器件具有透过率对比度高、结构紧凑等特性,对于发展全光功能器件在大规模全光复杂集成领域内的实际应用具有一定的促进作用.  相似文献   

19.
Using numerically simulated results, we show that an efficient laser-to-optical fibre coupling is possible by incorporating a uniform spot size converter (SSC) based on diluted waveguides with low contrast index waveguide. We propose photonic devices and circuits composed of a laser coupled through a SSC to a one and more microdisks, which are coupled to an optical fibre. Using the finite-difference time-domain (FDTD) method, we simulate the propagation characteristics of light in the fundamental elements as the pulse propagates down the whole structure. Also by the use of the FDTD method, we model and predict the geometrical parameters used for the design of the different types of the proposed devices. It is shown that the coupling efficiency is less than 10% without the diluted waveguide, but the SSC couplers have over 73% power transmission. The gap width between the microdisks, coupling between the laser and the sequence of microdisks is investigated. We report the microdisk effect on the coupling efficiency between the laser-SSC structure and the optical fibre.  相似文献   

20.
We propose and analyze a novel multiway high efficiency composite beam splitter based on propagation properties of the light waves in directional coupler and Y-junction. The splitting properties of the beam splitter have been numerically simulated and analyzed using the PWE and FDTD methods. Then in order to obtain equal distribution of power, we place and adjust some additional rods in the output waveguides to optimize the devices. It was shown that a large separating angle, a high beam rate, high flexibility, has been extended to have more light output channels in the beam splitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号