首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The possibility of controlling near-field radiative heat transfer with the use of silicon carbide thin films supporting surface phonon–polaritons in the infrared spectrum is explored. For this purpose, the local density of electromagnetic states is calculated and analyzed within the nanometric gap formed between two SiC films as well as the radiative heat flux exchanged between the thin layers.  相似文献   

2.
3.
Breakdown of the Planck blackbody radiation law at nanoscale gaps   总被引:1,自引:0,他引:1  
The Planck theory of blackbody radiation imposes a limit on the maximum radiative transfer between two objects at given temperatures. When the two objects are close enough, near-field effects due to tunneling of evanescent waves lead to enhancement of radiative transfer above the Planck limit. When the objects can support electromagnetic surface polaritons, the enhancement can be a few orders-of-magnitude larger than the blackbody limit. In this paper, we summarize our recent measurements of radiative transfer between two parallel silica surfaces and between a silica microsphere and a flat silica surface that show unambiguous evidence of enhancement of radiative transfer due to near-field effects above the Planck limit.  相似文献   

4.
The main objective of this paper is to extend to two-dimensional (2-D) medium the ray tracing-node analyzing method, which has already been successfully used to solve one-dimensional (1-D) problem of coupled heat transfer in a semitransparent medium. For simplicity, an infinitely long rectangular semitransparent medium with four black opaque surfaces is chosen as our studying object. A control volume method in the implicit scheme is adopted for discretizing the partial transient energy equation. In combination with spectral band model, the radiative heat source term is calculated using the radiative transfer coefficients (RTCs), which are deduced by the ray tracing method. The Partankar's linearization method is used to linearize the radiative source term and the opaque boundary condition, and the linearized equations are solved by the ADI method. Effects of absorption coefficient, refractive index and conductivity on transient cooling process in the 2-D gray rectangular medium are investigated under the condition that the radiation and convection processes cool one side of the rectangular medium while heat the remaining three sides.  相似文献   

5.
The objective of this paper is to discuss the role of fluctuational electrodynamics in the context of a generalized radiative heat transfer problem. Near-field effects, including the interference phenomenon and radiation tunneling, are important for applications to nanostructures. The classical theory of radiative transfer cannot be readily applied as the feature size approaches the dominant wavelength of radiative emission. At all length scales, however, propagation of radiative energy is properly represented by the electromagnetic wave approach, which requires the solution of the Maxwell equations. Fluctuational electrodynamics provides a model for thermal emission when solving a near-field radiation heat transfer problem, and the fluctuation-dissipation theorem provides the bridge between the strength of the fluctuations of the charges inside a body and its local temperature. This paper provides a complete and systematic derivation of the near-field radiative heat flux starting from the Maxwell equations. An illustrative example of near-field versus far-field radiation heat transfer is presented, and the length scale for transition from near- to far-field regime is discussed; the results show that this length scale can be as large as three times than predicted from Wien's law.  相似文献   

6.
Perturbation methods depend on a small parameter which is difficult to be found for real-life nonlinear problems. To overcome this shortcoming, two new but powerful analytical methods are introduced to solve nonlinear heat transfer problems in this Letter; one is He's variational iteration method (VIM) and the other is the homotopy–perturbation method (HPM). Nonlinear convective–radiative cooling equations are used as examples to illustrate the simple solution procedures. These methods are useful and practical for solving the nonlinear heat diffusion equation, which is associated with variable thermal conductivity condition. Comparison of the results obtained by both methods with exact solutions reveals that both methods are tremendously effective.  相似文献   

7.
Hyperbolic metamaterials alternately stacked by graphene and silicon(Si) are proposed and theoretically studied to investigate the contribution of terahertz(THz) waves to near-field radiative transfer. The results show that the heat transfer coefficient can be enhanced several times in a certain THz frequency range compared with that between graphene-covered Si bulks because of the presence of a continuum of hyperbolic modes. Moreover, the radiative heat transfer can also be enhanced remarkably for the proposed structure even in the whole THz range. The hyperbolic dispersion of the graphenebased hyperbolic metamaterial can be tuned by varying the chemical potential or the thickness of Si, with the tunability of optical conductivity and the chemical potential of graphene fixed. We also demonstrate that the radiative heat transfer can be actively controlled in the THz frequency range.  相似文献   

8.
We show that radiative heat transfer between two solid surfaces at short separation may increase by many orders of magnitude when the surfaces are covered by adsorbates. In this case, the heat transfer is determined by resonant photon tunneling between adsorbate vibrational modes. We propose an experiment to check the theory.  相似文献   

9.
Recent experiments report that the radiative heat conductance through a narrow vacuum gap between two flat surfaces increases as the inverse square of the width of the gap. Such a significant increase of thermal conductivity has attracted much interest because of numerous promising applications in nanoscale heat transfer and because of the lack of its theoretical explanation. It is shown here that the radiative heat transport across narrow layers can be described in terms of conventional theory adjusted to non-equilibrium structures with a steady heat flux.  相似文献   

10.
Micro/nano-porous polymeric material is considered a unique industrial material due to its extremely low thermal conductivity, low density, and high surface area. Therefore, it is necessary to establish an accurate thermal conductivity prediction model suiting their applicable conditions and provide a theoretical basis for expanding their applications. In this work, the development of the calculation model of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent years is summarized. Firstly, it reviews the process of establishing the overall equivalent thermal conductivity calculation model for micro/nanoporous polymers. Then, the predicted calculation models of thermal conductivity are introduced separately according to the conductive and radiative thermal conductivity models. In addition, the thermal conduction part is divided into the gaseous thermal conductivity model, solid thermal conductivity model and gas–solid coupling model. Finally, it is concluded that, compared with other porous materials, there are few studies on heat transfer of micro/ nanoporous polymers, especially on the particular heat transfer mechanisms such as scale effects at the micro/nanoscale. In particular, the following aspects of porous polymers still need to be further studied: micro scaled thermal radiation, heat transfer characteristics of particular morphologies at the nanoscales, heat transfer mechanism and impact factors of micro/nanoporous polymers. Such studies would provide a more accurate prediction of thermal conductivity and a broader application in energy conversion and storage systems.  相似文献   

11.
近场辐射引起的能量交换可以比远场辐射高若干个数量级.本文计算了SiC和Cu两种球形颗粒的近场辐射换热,发现当颗粒间距非常小时,辐射换热会大大强化.颗粒直径、颗粒间距以及颗粒的介电常数是决定近场辐射换热大小的重要因素,而颗粒温度对近场辐射换热的影响较小.  相似文献   

12.
Porous media combustion (PMC) is an active field of research with a number of potential advantages over free-flame combustors. A key contributor to these phenomena is the interphase heat exchange and heat recirculation from the products upstream to the reactants. In this paper, we present a network model that captures the conjugate heat transfer in pore-resolved 2D simulations of PMC. A series of simulations are presented with varying solid conduction and inlet velocity to isolate the role of conjugate heat transfer on the salient features of the burner, including flame stability, axial temperature profiles, and flame structure. We show that both the flame stabilization and the propagation behavior are strongly related to the conjugate heat transfer, and the flame stability regime is shifted to higher velocities as the conductivity of the solid material is increased.  相似文献   

13.
The propagation of exciton polaritons in an optical waveguide with a quantum well is studied. Spatial dispersion of the excitons causes the wave vector of the exciton polaritons to split between waveguide and exciton modes at resonance. The magnitude of this splitting is determined by the radiative decay parameter of excitons with corresponding polarization in the quantum well. The group velocity of the waveguide exciton polaritons in the resonance region can be three or four orders of magnitude lower than the speed of light in vacuum. Fiz. Tverd. Tela (St. Petersburg) 40, 362–365 (February 1998)  相似文献   

14.
The specific features of elastic scattering of volume waves and surface plasmon polaritons by polycrystalline gold films have been investigated. An analysis of the relative scattered energy, power spectral density of surface roughness, and integral and angular dependences of scattering of waves of different nature indicates a strong nonradiative multiple scattering of surface plasmon polaritons in gold films. When roughness increases, this scattering leads to an increase in scattering isotropy and to a partial loss of structural information about gold films. The analysis of the scattered energy of surface plasmon polaritons with application of the data on multifractal dimension of gold surface indicates also that the radiative scattering of surface plasmon polaritons depends on both the rms surface roughness and the surface wave propagation length.  相似文献   

15.
In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.  相似文献   

16.
The curved ray tracing method (CRT) is extended to radiative transfer in the linear-anisotropic scattering medium with graded index from non-scattering medium. In this paper, the CRT is presented to solve one-dimensional radiative transfer in the linear-anisotropic scattering gray medium with a linear refractive index and two black boundaries. The predicted temperature distributions and radiative heat flux at radiative equilibrium are determined by the proposed method, and numerical results are compared with the data in references. The results show that the CRT has a good accuracy for radiative transfer in the linear-anisotropic scattering medium with graded index and the dimensionless emissive power and dimensionless radiative heat flux depend on the dimensionless refractive index gradient. It can also be seen that the dimensionless refractive index gradient has important effects on the temperature discontinuity at the boundaries.  相似文献   

17.
The scalar Boltzmann transport equation (BTE) is often applicable to radiative energy transfer, electron-beam propagation, as well as thermal conduction by electrons and phonons provided that the characteristic length of the system is much larger than the wavelength of energy carriers and that certain interference phenomena and the polarization nature of carriers are ignored. It is generally difficult to solve the BTE analytically unless a series of assumptions are introduced for the particle distribution function and scattering terms. Yet, the BTE can be solved using statistical approaches such as Monte Carlo (MC) methods without simplifying the underlying physics significantly. Derivations of the MC methods are relatively straightforward and their implementation can be achieved with little effort; they are also quite powerful in accounting for complicated physical situations and geometries. MC simulations in radiative transfer, electron-beam propagation, and thermal conduction by electrons and phonons have similar simulation procedures; however, there are important differences in implementing the algorithms and scattering properties between these simulations. The objective of this review article is to present these simulation procedures in detail and to show that it is possible to adapt an existing MC computer code, for instance, in radiative transfer, to account for physics in electron-beam transport or phonon (or electronic thermal) conduction by sorting out the differences and implementing the correct corresponding steps. Several simulation results are presented and some of the difficulties associated with different applications are explained.  相似文献   

18.
由于倏逝波贡献,近场辐射换热可以远超黑体辐射定律给出的极限换热热流,对近场辐射换热的调控在近场热光伏及热管理方面有重要的应用前景。石墨烯是一种有潜力的可用于近场辐射换热调控的功能材料。本文研究了由石墨烯、铝掺杂氧化锌(aluminum-doped zinc-oxide,AZO)及SiC构成的多层复合薄膜的近场辐射换热特性。研究发现:"AZO薄膜+SiC基底"结构的频谱辐射热流在SiC的SPhP频域出现谷值,而"SiC薄膜+AZO基底"结构同时在两种表面极化激元的共振频率处出现峰值;覆盖单层石墨烯薄膜对"AZO薄膜+SiC基底"结构的近场辐射换热基本没有影响;而"石墨烯/SiC薄膜/AZO基底"结构却可以同时支持三种表面极化激元,并在调控石墨烯化学势到适当值时,可以有效增强近场换热。本研究有助于理解石墨烯对近场辐射换热的调控特性。  相似文献   

19.
Thermal radiation is generally assumed to be both spatially and temporally incoherent. In this paper, we challenge this idea. It is possible to design incandescent sources that are directional and spectrally selective by taking advantage of surface waves. We also report the discovery of the enhancement by several orders of magnitude of the energy density close to an interface at a particular frequency as well as the enhancement of the radiative flux between two interfaces when surface phonon polaritons can be excited. These results lead to the design of a novel class of infrared incandescent sources with potential applications in spectroscopy and thermophotovoltaic energy conversion.  相似文献   

20.
We present experimental results on ultralong-range surface plasmon polaritons, propagating in a thin metal film on a one-dimensional (1D) photonic crystal surface over a distance of several millimeters. This propagation length is about 2 orders of magnitude higher than the one in the ordinary Kretschmann configuration at the same optical frequency. We show that a long-range surface plasmon polaritons propagation may take place not only in a (quasi)symmetrical scheme, where a thin metal film is located between two media with (approximately) the same refraction index, but also in a scheme where the thin metal film is located between an appropriate 1D photonic crystal and an arbitrary (air, water, etc.) medium. The ultralong-range surface plasmon polaritons are potentially important for biosensors, plasmonics, and other applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号