首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-scale arrayed ZnO crystals with a series of novel morphologies, including tower-like, flower-like, and tube-like samples, have been successfully fabricated by a simple aqueous solution route. The morphology and orientation of the obtained ZnO crystal arrays can be conveniently tailored by changing the reactants and experimental conditions. For example, the tower-like ZnO crystal arrays were obtained in a reaction solution system including zinc salt, ammonia, ammonium salt, and thiourea, and the orientation of these tower-like crystals could be controlled by the contents of these reactants. Flower-like ZnO arrays were obtained at lower temperatures, and tube-like ZnO arrays were obtained by ultrasonic pretreatment of the reaction system. The growth mechanism of the tower-like and tube-like ZnO crystals was investigated by FESEM. The results show that tower-like crystals grow layer by layer, while tube-like crystals grow from active nanowires. Ultrasonic pretreatment is proved to be effective in promoting the formation of active nuclei, which have important effects on the formation of the tube-like ZnO crystals. In addition, large-scale arrays of these ZnO crystals can be successfully synthesized onto various substrates such as amorphous glass, crystalline quartz, and PET. This implies this chemical method has a wide application in the fabrication of nano-/microscale devices.  相似文献   

2.
Herein we demonstrate that the alignment of liquid crystals on a nanopatterned substrate can be controlled by the small variation of the size of the nanostructure. We fabricate hexagonally packed uniform polystyrene nanorod arrays and investigate the orientation of liquid crystals on the patterned surface. Homeotropic alignment is found on larger or longer rod arrays (diameter > 55 nm or length > 113 nm), while random alignment of liquid crystals is observed on smaller or shorter rod arrays. The change of liquid crystal orientation occurs with the small variation of the nanorod diameters or lengths.  相似文献   

3.
Silicon disk arrays and silicon pillar arrays with a close-packed configuration having an ordered periodicity were fabricated by the electrochemical etching of a silicon substrate through colloidal crystals used as a mask. The colloidal crystals were directly prepared by the self-assembly of polystyrene particles on a silicon substrate. The transfer of a two-dimensional hexagonal array of colloidal crystals to the silicon substrate could be achieved by the selective electrochemical etching of the exposed silicon surfaces, which were located in interspaces among adjacent particles. The diameter of the tip of the silicon pillars could be controlled easily by changing the anodization conditions, such as current density and period of electrochemical etching.  相似文献   

4.
In this paper we report a generalized templating approach for fabricating wafer-scale, two-dimensional, non-close-packed (ncp) colloidal crystals. Polymer nanocomposites consisting of monolayer ncp colloidal crystals prepared by a spin-coating process are used as sacrificial templates. After removal of the colloidal silica templates, the voids in the polymer matrix are infiltrated with other materials. By plasma-etching the polymer matrix, wafer-scale ncp colloidal crystals from a variety of functional materials can be made. This technique is scalable and compatible with standard microfabrication. Two-component colloidal arrays with complex micropatterns can also be fabricated by combining microfabrication with this templating approach. Normal-incidence reflectivity spectra of replicated titania ncp arrays agree well with theoretical prediction using Scalar Wave Approximation.  相似文献   

5.
Two‐dimensional arrays of polymer nanobowls can be fabricated by an oxygen plasma etching technique. The 2D colloidal crystals made of SiO2@PMMA particles are fabricated by a convective self‐assembly method. The oxygen plasma treatment is applied to the colloidal crystals to selectively etch the PMMA shells. Because the oxygen plasma etching proceeds in a layer‐by‐layer manner from top to bottom, the top parts of the PMMA shells are etched first, and the silica cores are exposed to the atmosphere, which can be removed with HF, leaving the bowl‐shaped PMMA shells to form 2D arrays of polymer nanobowls. The size and packing density of the nanobowl arrays can be tuned with tightly controlled etching time. The polymer nanobowl arrays can also serve as a template to direct the growth of calcium carbonate within the interstice of the nanobowls.  相似文献   

6.
Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.  相似文献   

7.
Gold nanoparticles have been synthesized using n-alkylthiol molecules as a passivating agent. By fixing the length of the thiol chain, it is possible to produce nanocrystal arrays, such as 1D chains, 2D arrays of chains and 3D crystals.  相似文献   

8.
Biological matrices can direct the in organic crystals such as vaterite. Cooperativity between organic matrices and in organic crystals resulted in similar co‐alignment of vaterite in aqueous solution of bovine serum albumin (BSA). And further, the secondary structures of BSA were also changed in the crystallization process. These results indicate the kinds of interactions that may occur in biological systems where large arrays of crystals are co‐aligned.  相似文献   

9.
We have developed the first high-diffraction-efficiency two-dimensional (2-D) photonic crystals for molecular recognition and chemical sensing applications. We prepared close-packed 2-D polystyrene particle arrays by self-assembly of spreading particle monolayers on mercury surfaces. The 2-D particle arrays amazingly diffract 80% of the incident light. When a 2-D array was transferred onto a hydrogel thin film showing a hydrogel volume change in response to a specific analyte, the array spacing was altered, shifting the 2-D array diffraction wavelength. These 2-D array photonic crystals exhibit ultrahigh diffraction efficiencies that enable them to be used for visual determination of analyte concentrations.  相似文献   

10.
This letter reports a versatile nonlithographic technique for mass fabricating three types of technologically important materials-polymer microwell arrays, 2D-ordered magnetic nanodots, and semiconductor nanopillar arrays, each with high crystalline qualities and wafer-scale sizes. Spin-coated hexagonal non-close-packed silica colloidal crystals embedded in a polymer matrix are used as starting templates to create 2D polymeric microwell arrays. These through-hole arrays can then be used as second-generation templates to make periodic magnetic nanodots and semiconductor nanopillars. This self-assembly approach is compatible with standard semiconductor microfabrication, and complex micropatterns can be created for potential device applications. The wafer-scale technique may find important applications in biomicroanalysis, high-density magnetic recording media, and microphotonics.  相似文献   

11.
Monolayer colloidal crystals(MCCs)are two-dimensional(2D)colloidal crystals consisting of a monolayer of monodisperse colloidal particles arrayed with a 2D periodic order.In recent years,MCCs have attracted intensive interest because they can act as 2D photonic crystals and be used as versatile templates for fabrication of various 2D nanostructure arrays.In this review,we provide an overview of the recent progress in the controllable fabrication of MCCs and their inverse replicas.First,some newly-developed methods for the self-assembly of MCCs based on different strategies including interfacial assembly and convective assembly are introduced.Second,some representative novel methods regarding the fabrication of various functional2D inverse replicas of MCCs,such as 2D arrays of nanobowls,nanocaps,and hollow spheres,as well as 2D monolayer inverse opals(MIOs),are described.In addition,the potential applications of MCCs and their inverse replicas are discussed.  相似文献   

12.
We report an approach for growing aligned ZnO nanowire arrays with a high degree control over size, orientation, dimensionality, uniformity, and possibly shape. Our method combines e-beam lithography and a low temperature hydrothermal method to achieve patterned and aligned growth of ZnO NWs at <100degreesC on general inorganic substrates, such as Si and GaN, without using catalyst. This approach opens up the possibility of applying ZnO nanowires as sensor arrays, piezoelectric antenna arrays, two-dimensional photonic crystals, IC interconnects, and nanogenerators.  相似文献   

13.
Two efficient approaches to assembling organic semiconducting single crystals are described. The methods rely on solvent wetting and dewetting on substrates with patterned wettability to selectively direct the deposition or removal of organic crystals. Substrates were functionalized with different self-assembled monolayers (SAMs) to achieve the desired wettabilities. The assembly of different organic crystals over centimeter-squared areas on Au, SiO2, and flexible plastic substrates was demonstrated. By designing line features on the substrate, the alignment of crystals, such as CuPc needles, was also achieved. As a demonstration of the potential application of this assembly approach, arrays of single-crystal organic field-effect transistors were fabricated by patterning organic single crystals directly onto and between transistor source and drain electrodes.  相似文献   

14.
Jiang JJ  Zheng SR  Liu Y  Pan M  Wang W  Su CY 《Inorganic chemistry》2008,47(22):10692-10699
The synergistic interplay of coordination and hydrogen-bonding interactions leads to assembly of isomorphous compounds of the general formula [Ln(ntb) 2](ClO 4) 3.(BDA4BPy) 3.2MeCN} infinity (Ln = La, Sm and Pr, ntb = tris(2-benzimidazoylmethyl)amine, and BDA4BPy = N (1), N (4)-bis(pyridin-4-ylmethylene)-benzene-1,4-diamine), of which polymorphic crystals can be isolated in a different solvent system. In acetonitrile (MeCN) solution, the compounds crystallize as a red color (Ln = La, meso -1, Ln = Pr, meso -2), while in an acetonitrile-benzonitrile (MeCN-PhCN) mixture, yellow crystals are obtained (Ln = Pr, helical - 2). The single-crystal X-ray diffraction analyses of these crystals reveal that the structures display similar cylindrical arrays containing polycompartmental cavities for guest inclusion. Occurrence of polymorphism is due to formation of helical and meso-helical arrays, giving rise to a way to tune the helicity through the solvent effects on the helix propensity of the bis-tripodal coordination converters.  相似文献   

15.
A theory is presented for predicting the size of ice crystals which result from steady-state, unidirectional growth within aqueous agar gels. Cellular arrays of adjacent ice crystals were separated by an amorphous water-agar membrane at a composition near the vitrification point. Using this vitrification composition and both a steady-state condition and a minimum free energy criterion, the size of ice crystals was predicted for a given solidification velocity and diffusion condition. It was found, however, that this simple model could not predict the trend towards larger crystal sizes that was observed when the initial agar concentration in the gels increased from 3% to 10% by weight agar.  相似文献   

16.
We report here the synthesis of nickel hexacyanoferrate (NiHCF) crystals using calf thymus DNA (CT-DNA) as a template. The double-stranded CT-DNA has been used as a template to self-assemble NiHCF crystals and to produce aggregates having different morphologies at different temperatures. The guided self-assembly behavior of DNA was studied at different temperatures by scanning electron microscopy. The cube-shaped crystals of NiHCF with an average diameter of 400 nm are observed along the DNA framework at room temperature; however, at higher temperatures, the morphology of NiHCF changed from open tubular to dendrimer. The intermediate temperatures show long chains (up to many micrometers) and spherical structures of NiHCF crystals. The micrometer long DNA template plays a key role in the formation of extended arrays of NiHCF crystals, suggesting that the templating action is retained even at the higher temperatures.  相似文献   

17.
Electroresponsive structurally colored materials composed of ordered arrays of polyaniline@poly(methyl methacrylate) (PANI@PMMA) core–shell nanoparticles have been successfully prepared. The core–shell nanoparticles were synthesized by deposition of PANI shells on the surfaces of the PMMA cores by the oxidative polymerization of anilinium chloride. Ordered arrays were then fabricated by using the fluidic cell method. Because the ordered arrays and the PANI shells generate structural and electrochromic colors, respectively, these core–shell colloidal crystals exhibited colors resulting from the combined effects of these materials. The crystal colors depended greatly on the size of PANI@PMMA particles and could also be varied by the application of a voltage. The electrochromic colors of these arrays were found to be quite different from those exhibited by pure PANI films prepared by electrochemical oxidation.  相似文献   

18.
A novel approach to fabricate periodic one-dimensional (1D) nanostructured arrays is developed using monolayer colloidal crystals as templates or masks. This approach is more flexible and less costly than traditional lithographic techniques. The morphology and structural parameters of periodic arrays can be easily controlled, further resulting in optimized properties. Herein we introduce recent work to create periodic 1D nanostructured arrays by combining colloidal templates with other techniques, such as solution techniques, electrodeposition, wet chemical etching, reactive ion etching (RIE), pulsed laser deposition (PLD), and sputtering. These periodic 1D nanostructured arrays with controllable morphology and structural parameters have extensive applications in areas such as nanophotonics, field emitters, solar cells, light-emitting diodes, and microfluidic devices.  相似文献   

19.
This communication reports a simple yet versatile nonlithographic approach for fabricating wafer-scale periodic nanohole arrays from a large variety of functional materials, including metals, semiconductors, and dielectrics. Spin-coated two-dimensional (2D) nonclose-packed colloidal crystals are used as first-generation shadow masks during physical vapor deposition to produce isolated nanohole arrays. These regular nanoholes can then be used as second-generation etching masks to create submicrometer void arrays in the substrates underneath. Complex patterns with micrometer-scale resolution can be made by standard microfabrication techniques for potential device applications. These 2D-ordered nanohole arrays may find important technological applications ranging from subwavelength optics to interferometric biosensors.  相似文献   

20.
Field-effect transistors based on single crystals of organic semiconductors have the highest reported charge carrier mobility among organic materials, demonstrating great potential of organic semiconductors for electronic applications. However, single-crystal devices are difficult to fabricate. One of the biggest challenges is to prepare dense arrays of single crystals over large-area substrates with controlled alignment. Here, we describe a solution processing method to grow large arrays of aligned C(60) single crystals. Our well-aligned C(60) single-crystal needles and ribbons show electron mobility as high as 11 cm(2)V(-1)s(-1) (average mobility: 5.2 ± 2.1 cm(2)V(-1)s(-1) from needles; 3.0 ± 0.87 cm(2)V(-1)s(-1) from ribbons). This observed mobility is ~8-fold higher than the maximum reported mobility for solution-grown n-channel organic materials (1.5 cm(2)V(-1)s(-1)) and is ~2-fold higher than the highest mobility of any n-channel organic material (~6 cm(2)V(-1)s(-1)). Furthermore, our deposition method is scalable to a 100 mm wafer substrate, with around 50% of the wafer surface covered by aligned crystals. Hence, our method facilitates the fabrication of large amounts of high-quality semiconductor crystals for fundamental studies, and with substantial improvement on the surface coverage of crystals, this method might be suitable for large-area applications based on single crystals of organic semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号