首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The effect of 8-methoxypsoralen (8-MOP) plus ultraviolet radiation (UV) of different wavelengths in the region 238–365 nm on the induction of SV40 from SV40-transformed Syrian hamster kidney cells was investigated. Results indicate that 8-MOP + UV treatment activates as much as 1000-fold more virus than UV alone at wavelengths in the region 302–365 nm. At wavelengths below 302 nm, 8-MOP addition to cells prior to irradiation shows little, if any, effect. A wavelength dependence for this viral induction is presented.  相似文献   

2.
The effect of different wavelengths of ultraviolet (UV) radiation on Herpes simplex virus when assayed on mammalian cells (measured by plaque forming ability) was investigated. The wavelength dependence of viral inactivation was obtained for 11 different wavelengths over the region 238–297 nm. The resulting action spectrum does not closely follow the absorption spectrum of either nucleic acid or protein. The most effective wavelengths for viral inactivation are over the region 260–280 nm.  相似文献   

3.
ULTRAVIOLET-ENHANCED REACTIVATION OF HERPES VIRUS IN HUMAN TUMOR CELLS   总被引:2,自引:0,他引:2  
Abstract —Virus-host cell interactions may be investigated by study of the enhancement of infectivity of ultraviolet (UV)-irradiated virus obtained by UV-irradiating the host cell [ultraviolet reactivation (UVR)]. This phenomenon was studied with Herpes simplex virus and normal (embryonic lung) and malignant (HeLa) human cells. Although the lung cells displayed no UVR, both the HeLa cells and a Sendai-virus carrier culture of HeLa cells demonstrated UVR capabilities. This UVR persisted at equal or increased levels for at least 24 h. Since the lung cells and HeLa cells have similar host-cell-reactivation (HCR) abilities, the differences in UVR suggests that UVR and HCR may operate by different mechanisms.  相似文献   

4.
Although ultraviolet radiation (UVR) has a genotoxicity for inducing skin cancers, the skin may tolerate UVC component because the epidermal layer prevents this short wavelength range from passing through. Here, UVC genotoxicity for mouse skin was evaluated in terms of DNA damage formation and mutagenicity. UVC induced UVR photolesions and mutations remarkably in the epidermis but poorly in the dermis, confirming the barrier ability of the epidermis against shorter UVR wavelengths. Moreover, the epidermis itself responded to UVC mutagenicity with mutation induction suppression, which suppressed the mutant frequencies to a remarkably low, constant level regardless of UVC dose. The mutation spectrum observed in UVC‐exposed epidermis showed a predominance of UV‐signature mutation, which occurred frequently in 5′‐TCG‐3′, 5′‐TCA‐3′ and 5′‐CCA‐3′ contexts. Especially, for the former two contexts, the mutations recurred at several sites with more remarkable recurrences at the 5′‐TCG‐3′ sites. Comparison of the UVC mutation spectrum with those observed in longer UVR wavelength ranges led us to a mechanism that explains why the sequence context preference of UV‐signature mutation changes according to the wavelength, which is based on the difference in the mCpG preference of cyclobutane pyrimidine dimer (CPD) formation among UVR ranges and the sequence context‐dependent cytosine deamination propensity of CPD.  相似文献   

5.
Human skin is constantly exposed to solar light containing visible and ultraviolet radiation (UVR), a powerful skin carcinogen. UVR elicits cellular responses in epidermal cells via several mechanisms: direct absorption of short‐wavelength UVR photons by DNA, oxidative damage caused by long‐wavelength UVR, and, as we recently demonstrated, via a retinal‐dependent G protein‐coupled signaling pathway. Because the human epidermis is exposed to a wide range of light wavelengths, we investigated whether opsins, light‐activated receptors that mediate photoreception in the eye, are expressed in epidermal skin to potentially serve as photosensors. Here we show that four opsins—OPN1‐SW, OPN2, OPN3 and OPN5—are expressed in the two major human epidermal cell types, melanocytes and keratinocytes, and the mRNA expression profile of these opsins does not change in response to physiological UVR doses. We detected two OPN3 splice variants present in similar amounts in both cell types and three OPN5 splice isoforms, two of which encode truncated proteins. Notably, OPN2 and OPN3 mRNA were significantly more abundant than other opsins and encoded full‐length proteins. Our results demonstrate that opsins are expressed in epidermal skin cells and suggest that they might initiate light–induced signaling pathways, possibly contributing to UVR phototransduction.  相似文献   

6.
Bacillus subtilis spores were exposed in vacuo to monochromatic UV radiation from synchrotron radiation in the wavelength range of 150 nm to 250 nm. Survival and frequency of mutation to histidine-independent reversion were analysed for three types of spores differing in DNA-repair capabilities. UVR spores (wild-type DNA repair capability) exhibited nearly equal sensitivity to the lethal effects of far-UV (220 nm and 250 nm) and of vacuum-UV radiation (150 and 165 nm), but showed marked resistance to 190 nm radiation. UVS spores (excision-repair and spore-repair deficient) and UVP spores (a DNA polymerase I-defective derivative of UVS) exhibited similar action spectra; pronounced sensitivity at 250 and 220 nm, insensitivity at 190 nm and a gradual increase of the sensitivity as the wavelength decreased to 165 nm. In all strains, the action spectra for mutation induction paralleled those for the inactivation, indicating that vacuum-UV radiation induced lethal and mutagenic damages in the spore DNA. The insensitivity of the spores to wavelengths around 190 nm may be explicable by assuming that radiation is absorbed by materials surrounding the core in which DNA is situated.  相似文献   

7.
Microalgae are capable of acclimating to changes in light and ultraviolet radiation (UVR, 280–400 nm). However, little is known about how the ecologically important coccolithophore Emiliania huxleyi responds to UVR when acclimated to different light regimes. Here, we grew E. huxleyi under indoor constant light or fluctuating sunlight with or without UVR, and investigated its growth, photosynthetic performance and pigmentation. Under the indoor constant light regime, the specific growth rate (μ) was highest, while fluctuating outdoor solar radiation significantly decreased the growth rate. Addition of UVR further decreased the growth rate. The repair rate of photosystem II (PSII), as reflected in changes in PSII quantum yield, showed an inverse correlation with growth rate. Cells grown under the indoor constant light regime exhibited the lowest repair rate, while cells from the outdoor fluctuating light regimes significantly increased their repair rate. Addition of UVR increased both the repair rate and intracellular UV‐absorbing compounds. This increased repair capability, at the cost of decreased growth rate, persisted after the cells were transferred back to the indoor again, suggesting an enhanced allocation of energy and resources for repair of photosynthetic machinery damage by solar UVR which persisted for a period after transfer from solar UVR.  相似文献   

8.
Abstract— Irradiation of guinea-pig skin with X rays and beta particles resulted in decreased total diffuse reflectance (DSR) of 330–400 nm light. Qualitatively, this response resembled that seen after irradiation of the skin of normal guinea-pigs with ultraviolet (UV) radiation of wavelength shorter than 300 nm or that of photosensitized guinea pigs with UV wavelengths longer than 300 nm. We postulate that the transformations which depress the DSR result from energy-transfer processes, independent of the class of radiation. Moreover, they are intimately related to subsequent changes in vascular permeabilities (delayed erythema) which occur after the same radiation exposures that lower the 330–400 nm DSR of skin surfaces.  相似文献   

9.
Abstract— The sensitivity of Hemophilus influenzae transforming DNA to monochromatic ultraviolet radiation has been determined with and without maximum photoreactivation. The fraction of ultraviolet damage which is photoreactivable (the photoreactivable sector) is large and varies with the wavelengths of the inactivating radiation, decreasing at the extremes of the ultraviolet spectrum. Equating photoreactivable damage with thymine dimer damage, we may interpret the wavelength dependence of photoreactivability and the spectrum for non-photo-reactivable damage in terms of the absorption spectra of thymidine and cytosine deoxyriboside. The data suggest that cytosine deoxyriboside alteration is important in non-photoreactivable biological damage.  相似文献   

10.
Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille   总被引:3,自引:0,他引:3  
Aplanospores of Chlamydomonas nivalis are frequently found in high-altitude, persistent snowfields where they are photosynthetically active despite cold temperatures and high levels of visible and ultraviolet (UV) radiation. The goals of this work were to characterize the UV environment of the cells in the snow and to investigate the existence and localization of screening compounds that might prevent UV damage. UV irradiance decreased precipitously in snow, with UV radiation of wavelengths 280-315 nm and UV radiation of wavelengths 315-400 nm dropping to 50% of incident levels in the top 1 and 2 cm, respectively. Isolated cell walls exhibited UV absorbance, possibly by sporopollenin, but this absorbance was weak in images of broken or plasmolyzed cells observed through a UV microscope. The cells also contained UV-absorbing cytoplasmic compounds, with the extrachloroplastic carotenoid astaxanthin providing most of the screening. Additional screening compound(s) soluble in aqueous methanol with an absorption maximum at 335 nm played a minor role. Thus, cells are protected against potentially high levels of UV radiation by the snow itself when they live several centimeters beneath the surface, and they rely on cellular screening compounds, chiefly astaxanthin, when located near the surface where UV fluxes are high.  相似文献   

11.
Five types of Bacillus subtilis spores (UVR, UVS, UVP, RCE, and RCF) differing in repair and/or recombinational capabilities were exposed to monochromatic radiations at 13 wavelengths from 50 to 300 nm in vacuum. An improved biological irradiation system connected to a synchrotron radiation source was used to produce monochromatic UV radiation in this extended wavelength range with sufficient fluence to inactivate bacterial spores. From the survival curves obtained, the action spectra for the inactivation of the spores were depicted. Recombination-deficient RCE (recE) and RCF (recF) spores were more sensitive than the wild-type UVR spores in the entire range of wavelengths. This was considered to mean that DNA was the major target for the inactivation of the spores. Vacuum-UV radiations of 125-175 nm were effective in killing the spores, and distinct peaks of the sensitivity were seen with all types of the spores. Insensitivities at 190 and 100 nm were common to all five types of spores, indicating that these wavelengths were particularly impenetrant and absorbed by the outer layer materials. The vacuum-UV peaks centering at 150 nm were prominent in the spores defective in recombinational repair, while the far-UV peaks at around 235 and 270 nm were prominent in the UVS (uvrA ssp) and UVP (uvrA ssp polA) spores deficient in removal mechanisms of spore photoproducts. Thus, the profiles of the action spectra were explained by three factors; the penetration depth of each radiation in a spore, the efficiency of producing DNA damage that could cause inactivation, and the repair capacity of each type of spore.  相似文献   

12.
The spatial distribution of the two-spotted spider mite Tetranychus urticae Koch is biased toward the lower surfaces of leaves as compared with the upper leaf surfaces on their host plants. Because of the deleterious effects of solar ultraviolet (UV) irradiation, we hypothesized T. urticae remains on lower leaf surfaces as an adaptation to avoid solar UV radiation (UVR). We examined the effects of solar UVR components on females and tested whether spatial distribution was associated with solar UVR avoidance. Attenuation of solar UVR using UV opaque film increased fecundity and reduced the movement of females from the upper to the lower leaf surfaces. In contrast, diverting solar UVR to the lower leaf surface using a light reflection sheet caused the mites to move from the lower to the upper leaf surfaces; however, attenuated UV reflection did not, suggesting that they occupy the lower leaf surface to avoid solar UVR. In monochromatic UVR tests, no eggs hatched when placed under 280–300 nm radiation, whereas almost all eggs hatched at 320–360 nm. Adult females, however, did not avoid wavelengths of 280 and 300 nm, but avoided 320–340 nm. We conclude that T. urticae exploit UVA information to avoid ambient UVB radiation.  相似文献   

13.
To quantify ocular exposure to solar ultraviolet radiation (UVR) and to assess the risk of eye damage in different geographical directions due to UVR exposure, we used a spectrometer and a manikin to measure horizontal ambient and ocular exposure UVR in different geographical directions at four different locations at the Northern Hemisphere. Describing the relationship of exposure to risk of eye damage requires the availability of UV hazard weighting function. So, we used the UV hazard weighting function (ICNIRP) proposed by International Commission on Non‐Ionizing Radiation Protection to determine the biologically effective UV irradiance (UVBEeye) and then cumulative effective radiant exposure (Heye) to shown the risk of eye. We found that in different geographical directions, distributions of ocular exposure to UVR were markedly different from those of horizontal ambient UVR. When the midday maximum SEA > 50°, eye received more UVR from the east and west directions during the morning and evening hours, respectively. However, when the midday maximum SEA < 50°, eye received more UVR from the south direction at noon. The results of this research indicate that the higher risk of eye caused by UVR varies according to the midday maximum SEA corresponding to different geographical direction.  相似文献   

14.
The role of solar UV radiation in the ecology of alpine lakes.   总被引:10,自引:0,他引:10  
Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.  相似文献   

15.
Abstract— Exposure of ICR 2A frog cells to photoreactivating light after treatment with monochromatic ultraviolet (UV) radiation in the 252–313 nm range resulted in an increase in survival with similar photoreactivable sectors for each of the wavelengths tested. As photoreactivating enzyme is specific for the repair of pyrimidine dimers in DNA, these findings support the hypothesis that these are critical lesions responsible for killing of cells exposed to UV radiation in this wavelength range. The action spectra for cell killing and production of UV-endonuclease sensitive sites were similar to the DNA absorption spectrum though not identical. Because the number of endonuclease sensitive sites is a reflection of the yield of pyrimidine dimers, these data also suggest that the induction of dimers in DNA by UV radiation in the 252–313 nm range is the principal event leading to cell death.  相似文献   

16.
The reproductive cells of macroalgae are regarded as the life history stages most susceptible to various environmental stresses, including UV radiation (UVR). UVR is proposed to determine the upper depth distribution limit of macroalgae on the shore. These hypotheses were tested by UV-exposure experiments, using spores and young thalli of the eulittoral Rhodophyceae Mastocarpus stellatus and Chondrus crispus and various sublittoral brown macroalgae (Phaeophyceae) with different depth distribution from Helgoland (German Bight) and Spitsbergen (Arctic). In spores, the degree of UV-induced inhibition of photosynthesis is lower in eulittoral species and higher in sublittoral species. After UV stress, recovery of photosynthetic capacity is faster in eulittoral compared to sublittoral species. DNA damage is lowest while repair of DNA damage is highest in eulittoral compared to sublittoral species. When the negative impact of UVR prevails, spore germination is inhibited. This is observed in deep water kelp species whereas the same UVR doses do not inhibit germination of shallow water kelp species. A potential acclimation mechanism to increase UV tolerance of brown algal spores is the species-specific ability to increase the content of UV-absorbing phlorotannins in response to UV-exposure. Growth rates of young Mastocarpus and Chondrus gametophytes exposed to experimental doses of UVR are not affected while growth rates of all young kelp sporophytes exposed to UVR are significantly lowered. Furthermore, morphological UV damage in Laminaria ochroleuca includes tissue deformation, lesion, blistering and thickening of the meristematic part of the lamina. The sensitivity of young sporophytes to DNA damage is correlated with thallus thickness and their optical characteristics. Growth rate is an integrative parameter of all physiological processes in juvenile plants. UV inhibition of growth may affect the upper distribution depth limit of adult life history stages. Juveniles possess several mechanisms to minimize UVR damage and, hence, are less sensitive but at the expense of growth. The species-specific susceptibility of the early life stages of macroalgae to UVR plays an important role for the determination of zonation patterns and probably also for shaping up community structure.  相似文献   

17.
This study compared biological responses of normal human fibroblasts (NHF1) to three sources of ultraviolet radiation (UVR), emitting UVC wavelengths, UVB wavelengths, or a combination of UVA and UVB (solar simulator; emission spectrum, 94.3% UVA and 5.7% UVB). The endpoints measured were cytotoxicity, intra‐S checkpoint activation, inhibition of DNA replication and mutagenicity. Results show that the magnitude of each response to the indicated radiation sources was best predicted by the density of DNA cyclobutane pyrimidine dimers (CPD). The density of 6‐4 pyrimidine–pyrimidone photoproducts was highest in DNA from UVC‐irradiated cells (14% of CPD) as compared to those exposed to UVB (11%) or UVA–UVB (7%). The solar simulator source, under the experimental conditions described here, did not induce the formation of 8‐oxo‐7,8‐dihydroguanine in NHF1 above background levels. Taken together, these results suggest that CPD play a dominant role in DNA damage responses and highlight the importance of using endogenous biomarkers to compare and report biological effects induced by different sources of UVR.  相似文献   

18.
Abstract The susceptibility of bacteriophage damaged by solar-ultraviolet (UV, 290-380 nm) radiations at denned wavelengths and by radiation at a visible wavelength (405 nm) to the Weigle reactivation system induced by far-UV (254 nm) irradiation of the host cell has been studied in a repair competent strain of Escherichia coli . The sector of inducible repair diminishes with wavelength, being very small after 313 nm irradiation and absent after irradiation at longer wavelengths. However, irradiation of bacteria at wavelengths as long as 313 nm induces a bacteriophage reactivation system as effectively as radiation at 254 nm in both the repair competent and an excision deficient host cell. At longer wavelengths pre-irradiation of the repair competent host cell enhances reactivation of 254 nm irradiated bacteriophage but the reactivation is smaller and the process quite distinct from that induced in the 254-313 nm region. We conclude that, with increasing wavelength, damage induced by solar UV radiations becomes increasingly less susceptible to repair systems induced by far-UV (pyrimidine dimers) and that this type of inducible repair system is no longer induced by wavelengths longer than 313 nm.  相似文献   

19.
Abstract— Glutathione depletion of cultured human skin fibroblasts by treatment with buthionine-S,R-sulfoximine (BSO) sensitises them to radiation at a series of defined wavelengths throughout the solar UV range. We now show that there is a close quantitative correlation between cellular glutathione content (as depleted by BSO) and sensitivity to radiation at 365 nm. A weaker correlation is observed when cells are depleted of glutathione using diethylmaleimide. Both fibroblasts and epidermal keratinocytes derived from the same foreskin biopsy are sensitised to radiation at 313 nm by glutathione depletion. However, the keratinocytes are sensitised to a much lesser extent, an observation which agrees quantitatively with the higher residual levels of cellular glutathione remaining after maximum depletion by BSO (approximately 25% for the keratinocytes vs less than 5% for the fibroblasts). At low to intermediate fluence levels, 10 mM cysteamine present during irradiation at 302 nm is able to almost completely reverse the sensitising effects of glutathione depletion suggesting that the endogenous thiol protects against radiation at this wavelength by a free radical scavenging mechanism. At 313 nm, the sensitisation is not reversed by cysteamine suggesting that glutathione plays a more specific role in protection against radiation at longer wavelengths. Xeroderma pigmentosum group A fibroblasts (excision deficient) are also sensitised to radiation at 313 and 365 nm by depletion of glutathione but since the sensitization is less than that observed for the normal strain, we cannot conclude that glutathione protects against a sector of DNA damage susceptible to excision repair. The results provide further evidence that endogenous glutathione is involved in protecting human skin cells against a wide range of solar radiation damage and suggest that while free radical scavenging is involved at the shortest wavelength (302 nm) tested, a more specific role of glutathione is involved in protection against radiation at longer wavelengths.  相似文献   

20.
Abstract This study compared how well minimal erythema doses predicted using the reference action spectrum for UV erythema proposed by the International Commission on Illumination (CIE) in 1987 agreed with those observed in phototesting a large number of subjects with normal responses to sunlight to six different wavelengths of UV radiation (UVR) between 300 and 400 nm. It was found that, within the limits of experimental error, the hypothesis that the CIE reference action spectrum is a valid predictor of the erythemal effectiveness of different wavelengths of UVR could not be dismissed. There is no strong reason, therefore, why the CIE action spectrum should not continue to be used as a reference to compare the erythemal effectivenesses of different broadband sources. However, close examination of the residuals from the regression analysis suggested that the erythemal sensitivity of skin at longer UV wavelengths (>350 nm) in the population studied here is greater than predicted from the CIE reference action spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号