首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A weakly nonlinear stability analysis is performed to search for the effects of compressibility on a mode of instability of the three-dimensional boundary layer flow due to a rotating disk. The motivation is to extend the stationary work of [ 1 ] (hereafter referred to as S90) to incorporate into the nonstationary mode so that it will be investigated whether the finite amplitude destabilization of the boundary layer is owing to this mode or the mode of S90. Therefore, the basic compressible flow obtained in the large Reynolds number limit is perturbed by disturbances that are nonlinear and also time dependent. In this connection, the effects of nonlinearity are explored allowing the finite amplitude growth of a disturbance close to the neutral location and thus, a finite amplitude equation governing the evolution of the nonlinear lower branch modes is obtained. The coefficients of this evolution equation clearly demonstrate that the nonlinearity is destabilizing for all the modes, the effect of which is higher for the nonstationary waves as compared to the stationary waves. Some modes particularly having positive frequency, regardless of the adiabatic or wall heating/cooling conditions, are always found to be unstable, which are apparently more important than those stationary modes determined in S90. The solution of the asymptotic amplitude equation reveals that compressibility as the local Mach number increases, has the influence of stabilization by requiring smaller initial amplitude of the disturbance for the laminar rotating disk boundary layer flow to become unstable. Apart from the already unstable positive frequency waves, perturbations with positive frequency are always seen to compete to lead the solution to unstable state before the negative frequency waves do. Also, cooling the surface of the disk will be apparently ineffective to suppress the instability mechanisms operating in this boundary layer flow.  相似文献   

2.
This paper deals with recent developments of linear and nonlinear Rossby waves in an ocean. Included are also linear Poincaré, Rossby, and Kelvin waves in an ocean. The dispersion diagrams for Poincaré, Kelvin and Rossby waves are presented. Special attention is given to the nonlinear Rossby waves on a β-plane ocean. Based on the perturbation analysis, it is shown that the nonlinear evolution equation for the wave amplitude satisfies a modified nonlinear Schrödinger equation. The solution of this equation represents solitary waves in a dispersive medium. In other words, the envelope of the amplitude of the waves has a soliton structure and these envelope solitons propagate with the group velocity of the Rossby waves. Finally, a nonlinear analytical model is presented for long Rossby waves in a meridional channel with weak shear. A new nonlinear wave equation for the amplitude of large Rossby waves is derived in a region where fluid flows over the recirculation core. It is shown that the governing amplitude equations for the inner and outer zones are both KdV type, where weak nonlinearity is balanced by weak dispersion. In the inner zone, the nonlinear amplitude equation has a new term proportional to the 3/2 power of the difference between the wave amplitude and the critical amplitude, and this term occurs to account for a nonlinearity due to the flow over the vortex core. The solution of the amplitude equations with the linear shear flow represents the solitary waves. The present study deals with the lowest mode (n=1) analysis. An extension of the higher modes (n?2) of this work will be made in a subsequent paper.  相似文献   

3.
We consider numerical instability that can be observed in simulations of solitons of the nonlinear Schrödinger equation (NLS) by a split‐step method (SSM) where the linear part of the evolution is solved by a finite‐difference discretization. The von Neumann analysis predicts that this method is unconditionally stable on the background of a constant‐amplitude plane wave. However, simulations show that the method can become unstable on the background of a soliton. We present an analysis explaining this instability. Both this analysis and the features and threshold of the instability are substantially different from those of the Fourier SSM, which computes the linear part of the NLS by a spectral discretization. For example, the modes responsible for the numerical instability are not similar to plane waves, as for the Fourier SSM or, more generally, in the von Neumann analysis. Instead, they are localized at the sides of the soliton. This also makes them different from “physical” (as opposed to numerical) unstable modes of nonlinear waves, which (the modes) are localized around the “core” of a solitary wave. Moreover, the instability threshold for thefinite‐difference split‐step method is considerably relaxed compared with that for the Fourier split‐step. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1002–1023, 2016  相似文献   

4.
For a general evolution equation with a Silnikov homoclinic orbit, Smale horseshoes are constructed with the tools of [1] and in the same way as in [1]. The linear part of the evolution equation has a finite number of unstable modes. For evolution equations with infinitely many linearly unstable modes, the problem is still open.  相似文献   

5.
We consider nonlinear aspects of the flow of an inviscid two-dimensional jet into a second immiscible fluid of different density and unbounded extent. Velocity jumps are supported at the interface, and the flow is susceptible to the Kelvin–Helmholtz instability. We investigate theoretically the effects of horizontal electric fields and surface tension on the nonlinear evolution of the jet. This is accomplished by developing a long-wave matched asymptotic analysis that incorporates the influence of the outer regions on the dynamics of the jet. The result is a coupled system of long-wave nonlinear, nonlocal evolution equations governing the interfacial amplitude and corresponding horizontal velocity, for symmetric interfacial deformations. The theory allows for amplitudes that scale with the undisturbed jet thickness and is therefore capable of predicting singular events such as jet pinching. In the absence of surface tension, a sufficiently strong electric field completely stabilizes (linearly) the Kelvin–Helmholtz instability at all wavelengths by the introduction of a dispersive regularization of a nonlocal origin. The dispersion relation has the same functional form as the destabilizing Kelvin–Helmholtz terms, but is of a different sign. If the electric field is weak or absent, then surface tension is included to regularize Kelvin–Helmholtz instability and to provide a well-posed nonlinear problem. We address the nonlinear problems numerically using spectral methods and establish two distinct dynamical behaviors. In cases where the linear theory predicts dispersive regularization (whether surface tension is present or not), then relatively large initial conditions induce a nonlinear flow that is oscillatory in time (in fact quasi-periodic) with a basic oscillation predicted well by linear theory and a second nonlinearly induced lower frequency that is responsible for quasi-periodic modulations of the spatio-temporal dynamics. If the parameters are chosen so that the linear theory predicts a band of long unstable waves (surface tension now ensures that short waves are dispersively regularized), then the flow generically evolves to a finite-time rupture singularity. This has been established numerically for rather general initial conditions.  相似文献   

6.
Weakly Nonlinear Stability Analysis of Frontal Polymerization   总被引:1,自引:0,他引:1  
  相似文献   

7.
Waves with constant, nonzero linearized frequency form an interesting class of nondispersive waves whose properties differ from those of nondispersive hyperbolic waves. We propose an inviscid Burgers‐Hilbert equation as a model equation for such waves and give a dimensional argument to show that it models Hamiltonian surface waves with constant frequency. Using the method of multiple scales, we derive a cubically nonlinear, quasi‐linear, nonlocal asymptotic equation for weakly nonlinear solutions. We show that the same asymptotic equation describes surface waves on a planar discontinuity in vorticity in two‐dimensional inviscid, incompressible fluid flows. Thus, the Burgers‐Hilbert equation provides an effective equation for these waves. We describe the Hamiltonian structure of the Burgers‐Hilbert and asymptotic equations, and show that the asymptotic equation can also be derived by means of a near‐identity transformation. We derive a semiclassical approximation of the asymptotic equation and show that spatially periodic, harmonic traveling waves are linearly and modulationally stable. Numerical solutions of the Burgers‐Hilbert and asymptotic equations are in excellent agreement in the appropriate regime. In particular, the lifespan of small‐amplitude smooth solutions of the Burgers‐Hilbert equation is given by the cubically nonlinear timescale predicted by the asymptotic equation. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Propagation of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions is analyzed. The Kadomtsev–Petviashivili (KP) equation is derived by using the reductive perturbation theory. A Sagdeev potential for this system has been proposed. This potential is used to study the stability conditions and existence of solitonic solutions. Also, it is shown that a rarefactive soliton can be propagates in most of the cases. The soliton energy has been calculated and a linear dispersion relation has been obtained using the standard normal-modes analysis. The effects of variable dust charge on the amplitude, width and energy of the soliton and its effects on the angular frequency of linear wave are discussed too. It is shown that the amplitude of solitary waves of KP equation diverges at critical values of plasma parameters. Solitonic solutions of modified KP equation with finite amplitude in this situation are derived.  相似文献   

9.
Many interesting free-surface flow problems involve a varying bottom. Examples of such flows include ocean waves propagating over topography, the breaking of waves on a beach, and the free surface of a uniform flow over a localized bump. We present here a formulation for such flows that is general and, from the outset, demonstrates the wave character of the free-surface evolution. The evolution of the free surface is governed by a system of equations consisting of a nonlinear wave-like partial differential equation coupled to a time-independent linear integral equation. We assume that the free-surface deformation is weakly nonlinear, but make no a priori assumption about the scale or amplitude of the topography. We also extend the formulation to include the effect of mean flows and surface tension. We show how this formulation gives some of the well-known limits for such problems once assumptions about the amplitude and scale of the topography are made.  相似文献   

10.
There are many fluid flows where the onset of transition can be caused by different instability mechanisms which compete in the nonlinear regime. Here the interaction of a centrifugal instability mechanism with the viscous mechanism which causes Tollmien-Schlichting waves is discussed. The interaction between these modes can be strong enough to drive the mean state; here the interaction is investigated in the context of curved channel flows so as to avoid difficulties associated with boundary layer growth. Essentially it is found that the mean state adjusts itself so that any modes present are neutrally stable even at finite amplitude. In the first instance the mean state driven by a vortex of short wavelength in the absence of a Tollmien-Schlichting wave is considered. It is shown that for a given channel curvature and vortex wavelength there is an upper limit to the mass flow rate which the channel can support as the pressure gradient is increased. When Tollmien-Schlichting waves are present then the nonlinear differential equation to determine the mean state is modified. At sufficiently high Tollmien-Schlichting amplitudes it is found that the vortex flows are destroyed, but there is a range of amplitudes where a fully nonlinear mixed vortex-wave state exists and indeed drives a mean state having little similarity with the flow which occurs without the instability modes. The vortex and Tollmien-Schlichting wave structure in the nonlinear regime has viscous wall layers and internal shear layers; the thickness of the internal layers is found to be a function of the Tollmien-Schlichting wave amplitude.  相似文献   

11.
Amplitude equations governing the nonlinear resonant interaction of equatorial baroclinic and barotropic Rossby waves were derived by Majda and Biello and used as a model for long range interactions (teleconnections) between the tropical and midlatitude troposphere. An overview of that derivation is nonlinear wave theory, but not in atmospheric presented and geared to readers versed in sciences. In the course of the derivation, two other sets of asymptotic equations are presented: the long equatorial wave equations and the weakly nonlinear, long equatorial wave equations. A linear transformation recasts the amplitude equations as nonlinear and linearly coupled KdV equations governing the amplitude of two types of modes, each of which consists of a coupled tropical/midlatitude flow. In the limit of Rossby waves with equal dispersion, the transformed amplitude equations become two KdV equations coupled only through nonlinear fluxes. Four numerical integrations are presented which show (i) the interaction of two solitons, one from either mode, (ii) and (iii) the interaction of a soliton in the presence of different mean wind shears, and (iv) the interaction of two solitons mediated by the presence of a mean wind shear.  相似文献   

12.
In this study a theoretical approach is pursued to investigate the effects of suction and blowing on the structure of the lower branch neutral stability modes of three-dimensional small disturbances imposed on the incompressible von Karman’s boundary layer flow induced by a rotating-disk. Particular interest is placed upon the short-wavelength, non-linear and nonstationary crossflow vortex modes developing within the presence of suction/blowing at sufficiently high Reynolds numbers with reasonably small scaled frequencies. Following closely the asymptotic framework introduced in [1], the role of suction on the non-linear disturbances of the lower branch described first in [2] for the stationary modes only, is extended in order to obtain an understanding of the behavior of non-stationary perturbations. The analysis using the rational asymptotic technique based on the triple-deck theory enables us to derive initially an eigenrelation which describes the evolution of linear modes. The asymptotic linear modes calculated at high Reynolds number limit are found to be destabilizing as far as the non-parallelism accounted by the approach is concerned, and they compare fairly well with the numerical results generated directly by solving the linearized system with the usual parallel flow approximation. An amplitude equation is derived next to account for the effects of non-linearity. Even though the form of this equation is the same as that of found in [2] for no suction, it is under the strong influence of suction and blowing. This amplitude equation is shown to be adjusted by a balance between viscous and Coriolis forces, and it describes the evolution of not only the stationary but also the non-stationary modes for both suction and injection applied at the disk surface. A close investigation of the amplitude equation shows that the non-linearity is highly destabilizing for both positive and negative frequency waves, though finite amplitude growth of a disturbance having positive frequency close to the neutral location is more effective at destabilization of the flow under consideration. Finally, a smaller initial amplitude of a disturbance is found to be sufficient for the non-linear amplification of the modes in the case of suction, whereas a larger amplitude is required if injection is active on the surface of the disk.  相似文献   

13.
The full nonlinear initial-boundary value problem for the evolution of disturbances in plane Poiseuille flow is considered. The problem is formulated in vector form using the normal velocity and normal vorticity as components. The solution is presented as an expansion in linear eigenmodes. These modes consist of both Orr-Sommerfeld modes and modes of the normal vorticity (Squire) equation. The case of degenerating eigenmodes is also considered and it is shown that the Benney-Gustavsson normal velocity-normal vorticity resonance is a special case of a degeneracy between the vector eigenmodes. The solution to the nonlinear problem is presented as an expansion in the linear eigenmodes as well as in modes of the self-adjoint part of the linear equation. The full nonlinear solution is further reduced to small systems of coupled amplitude equations using the center manifold theorem.  相似文献   

14.
Undesirable splashing appears in copper converters when air is injected into the molten matte to trigger the conversion process. We consider here a cylindrical container horizontally placed and containing water, where gravity waves on the liquid surface are generated due to water injection through a lateral submerged nozzle. The fluid dynamics in a transversal section of the converter is modeled by a 2-D inviscid potential flow involving a gravity wave equation with local damping on the liquid surface. Once the model is established, using a finite element method, the corresponding natural frequencies and normal modes are numerically computed in the absence of injection, and the solution of the system with injection is obtained using the spectrum. If a finite number of modes is considered, this approximation leads to a system of ordinary differential equations where the input is represented by the fluid injection. The dynamics is simulated as perturbations around a constant fluid injection solution, which is the desired operating state of the system, considering that the conversion process does not have to be stopped or seriously affected by the control. The solution is naturally unstable without control and the resulting increase of amplitude of the surface waves are assimilable to the splashing inside the converter. We show numerically that a variable flow around the operating injection is able to sensibly reduce these waves. This control is obtained by a LQG feedback law by measuring the elevation of the free surface at the point corresponding to the opposite extreme to where the nozzle injection is placed.  相似文献   

15.
It is shown, using a quite general formulation, that the amplitude evolution equation for slowly varying finite amplitude waves is usually first order in both space and time. One advantage of the present formulation is that it becomes possible to easily identify, from their linear eigensolutions, interesting exceptional cases in which the amplitude evolves according to a partial differential equation that is second order in either space or time. The theory is applied to a number of specific problems, including flows with broken line profiles, and inviscid shear flows having nonlinear critical layers.  相似文献   

16.
A higher-order strongly nonlinear model is derived to describe the evolution of large amplitude internal waves over arbitrary bathymetric variations in a two-layer system where the upper layer is shallow while the lower layer is comparable to the characteristic wavelength. The new system of nonlinear evolution equations with variable coefficients is a generalization of the deep configuration model proposed by Choi and Camassa [ 1 ] and accounts for both a higher-order approximation to pressure coupling between the two layers and the effects of rapidly varying bottom variation. Motivated by the work of Rosales and Papanicolaou [ 2 ], an averaging technique is applied to the system for weakly nonlinear long internal waves propagating over periodic bottom topography. It is shown that the system reduces to an effective Intermediate Long Wave (ILW) equation, in contrast to the Korteweg-de Vries (KdV) equation derived for the surface wave case.  相似文献   

17.
This paper considers the phenomenon of explosive resonant triads in weakly nonlinear, dispersive wave systems. These nearly linear waves with slowly varying amplitudes become unbounded in finite time. It is shown that such interactions are much stronger than previously thought. These waves can be thought of as a nonlinear instability in the sense that a weakly nonlinear perturbation to some system grows to such a magnitude that the behavior of the system is governed by strongly nonlinear effects. This may occur for systems that are linearly or neutrally stable. This resolution is contrasted with previous resolutions of the problem, which assumed such perturbations remained large amplitude, nearly linear waves. Analytical and numerical evidence is presented to support these claims.  相似文献   

18.
19.
Solitary waves in a general nonlinear lattice are discussed, employing as a model the nonlinear Schrödinger equation with a spatially periodic nonlinear coefficient. An asymptotic theory is developed for long solitary waves, which span a large number of lattice periods. In this limit, the allowed positions of solitary waves relative to the lattice, as well as their linear stability properties, hinge upon a certain recurrence relation which contains information beyond all orders of the usual two‐scale perturbation expansion. It follows that only two such positions are permissible, and of those two solitary waves, one is linearly stable and the other unstable. For a cosine lattice, in particular, the two possible solitary waves are centered at a maximum or minimum of the lattice, with the former being stable, and the analytical predictions for the associated linear stability eigenvalues are in excellent agreement with numerical results. Furthermore, a countable set of multi‐solitary‐wave bound states are constructed analytically. In spite of rather different physical settings, the exponential asymptotics approach followed here is strikingly similar to that taken in earlier studies of solitary wavepackets involving a periodic carrier and a slowly varying envelope, which underscores the general value of this procedure for treating multiscale solitary‐wave problems.  相似文献   

20.
A strongly nonlinear asymptotic model describing the evolution of large amplitude internal waves in a two-layer system is studied numerically. While the steady model has been demonstrated to capture correctly the characteristics of large amplitude internal solitary waves, a local stability analysis shows that the time-dependent inviscid model suffers from the Kelvin–Helmholtz instability due to a tangential velocity discontinuity across the interface accompanied by the interfacial deformation. An attempt to represent the viscous effect that is missing in the model is made with eddy viscosity, but this simple ad hoc model is shown to fail to suppress unstable short waves. Alternatively, when a smooth low-pass Fourier filter is applied, it is found that a large amplitude internal solitary wave propagates stably without change of form, and mass and energy are conserved well. The head-on collision of two counter-propagating solitary waves is studied using the filtered strongly nonlinear model and its numerical solution is compared with the weakly nonlinear asymptotic solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号