首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the pharmacokinetic parameters of chemotherapeutics, serum albumin binding is a critical factor in determining drug distribution and bioavailability. In this study, the binding properties as well as the interaction of spectinomycin with Bovine serum albumin was investigated. Spectinomycin showed stronger binding with BSA at higher temperatures, which diminishes by decreasing the temperature. The binding constant of spectinomycin with BSA varied from 3.1 × 103 M?1 at 298 K to 6.3 × 103 M?1 at 313 K. By increasing the temperature, from 298 to 313 K, the binding affinity was increased by twofolds. Thermodynamic analysis indicated changes in albumin conformation and partial loss of folding during spectinomycin-albumin binding. The mild-moderate binding affinity of spectinomycin with BSA will be important in determining the drug–drug interactions at the binding sites of BSA. The presence of stronger binding ligand e.g., chloramphenicol, tetracyclines or diclofenac will compete with spectinomycin for its binding sites, therefore, lowering its serum albumin binding. The result of this study will be helpful in understanding of the binding properties and mechanisms of interaction of spectinomycin with bovine serum albumin.  相似文献   

2.
The mechanism of the interaction between bovine serum albumin (BSA) and [Pt(phen) (histidine)]+ complex was studied employing ultraviolet (UV) absorption, circular dichroism (CD), FT-IR, differential pulse voltammetry (DPV), and fluorescence spectral methods. Fluorescence data showed that the intrinsic fluorescence of BSA was strongly quenched by Pt(II) complex in terms of an untypical static quenching process. The corresponding number of binding sites (n) and binding constant (K b) of BSA and complex at 283, 298, and 310 K were calculated to be 0.61?×?106, 19?×?106, and 42?×?106 M?1, respectively. The results showed that the increasing temperature improves the stability of the complex–BSA system, which results in a higher binding constant and the number of binding sites of the complex–BSA system. The positive ΔH and positive ΔS indicated that hydrophobic forces might play a major role in the binding between complex and BSA. Based on Forster’s theory of non-radiation energy transfer, the binding distance (r) between the donor (BSA) and acceptor (Pt(II) complex) was evaluated. The results of CD, UV–vis, DPV, and FT-IR spectroscopy showed that the binding of Pt(II) complex to BSA induced conformational changes in BSA  相似文献   

3.
The interaction of bovine serum albumin (BSA) with raloxifene was assessed via fluorescence spectroscopy. The number of binding sites and the apparent binding constants between raloxifene and BSA were analyzed using the Tachiya model and Stern-Volmer equation, respectively. The apparent binding constant and the number of binding sites at 298 K were 2.33×105 L?mol?1 and 1.0688 as obtained from the Stern-Volmer equation and 2.00×105 L?mol?1 and 2.6667 from the Tachiya model. The thermodynamic parameters ΔH and ΔS were calculated to be 69.46 kJ?mol?1 and 121.12 J?K?1?mol?1, respectively, suggesting that the force acting between raloxifene and BSA was mainly a hydrophobic interaction. The binding distance between the donor (BSA) and acceptor (raloxifene) was 4.77 nm according to Förster’s nonradiational energy transfer theory. It was also found that common metal ions such as K+, Cu2+, Zn2+, Mg2+ and Ca2+ decreased the apparent association constant and the number of binding sites between raloxifene and BSA.  相似文献   

4.

Background

Rivaroxaban is a direct inhibitor of coagulation factor Xa and is used for venous thromboembolic disorders. The rivaroxaban interaction with BSA was studied to understand its PK and PD (pharmacokinetics and pharmacokinetics) properties. Multi-spectroscopic studies were used to study the interaction which included UV spectrophotometric, spectrofluorometric and three dimensional spectrofluorometric studies. Further elucidation of data was done by molecular simulation studies to evaluate the interaction behavior between BSA and rivaroxaban.

Results

Rivaroxaban quenched the basic fluorescence of BSA molecule by the process of static quenching since rivaroxaban and BSA form a complex that results in shift of the absorption spectra of BSA molecule. A decline in the values of binding constants was detected with the increase of temperatures (298–308 K) and the binding constants were in range from 1.32 × 105 to 4.3 × 103 L mol?1 indicating the instability of the BSA and rivaroxaban complex at higher temperatures. The data of number of binding sites showed uniformity. The site marker experiments indicated site I (sub-domain IIA) as the principal site for rivaroxaban binding. The thermodynamic study experiments were carried at the temperatures of 298/303/308 K. The ?G0, ?H0 and ?S0 at these temperatures ranged between ? 24.67 and ? 21.27 kJ mol?1 and the values for ?H0 and ?S0 were found to be ? 126 kJ mol?1 and ?S ? 340 J mol?1 K?1 The negative value of ?G0 indicating spontaneous binding between the two molecules. The negative values in ?H0 and ?S0 indicated van der Waals interaction and hydrogen bonding were involved during the interaction between rivaroxaban and BSA.

Conclusions

The results of molecular docking were consistent with the results obtained from spectroscopic studies in establishing the principal binding site and type of bonds between rivaroxaban and BSA.
  相似文献   

5.
Plasmodium deoxyguanylate pathways are an attractive area of investigation for future metabolic and drug discovery studies due to their unusual substrate specificities. We investigated the energetic contribution to thymidylate kinase substrate binding, and the forces underlying ligand recognition. The binding constant varied from 8 × 104 M?1 at 290 K to 6 × 104 M?1 at 310 K for dGMP, and from 16 × 104 M?1 at 290 K to 4 × 104 M?1 at 310 K for TMP. ΔC p was estimated as ?1.75 kJ mol?1 K?1 for TMP and +2 kJ mol?1 K?1 for dGMP. In comparison with TMP, the binding of dGMP to PfTMK produced less favorable enthalpy change, positive or favorable entropic contribution at lower temperature, positive heat capacity change, negative $ \Updelta S_{\text{HE}}^{^\circ } $ , positive ΔS other, higher total solvent-exposed surface area and more or less rigid body binding. These changes indicate unfavorable conditions for proper binding and lower conformational changes, and suboptimal structural reordering during dGMP binding.  相似文献   

6.
The interaction between 2,4-dichlorophenol (DCP) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy combined with UV-vis absorption and circular dichroism (CD) spectroscopy under simulative physiological conditions. The experiment results show that the fluorescence intensity of BSA is dramatically decreased owing to the formation of a DCP–BSA complex. The corresponding effective quenching constants (K a) between DCP and BSA at four different temperatures (292, 298, 304 and 310 K) were determined to be 10.08×104, 9.082×104, 8.177×104, and 7.260×104 L?mol?1, respectively. The thermodynamics parameters enthalpy change (ΔH) and entropy change (ΔS) were calculated to be ?13.64 kJ?mol?1 and 49.08 J?mol?1?K?1, which suggested that hydrophobic interaction was the predominant intermolecular force. Site marker competitive experiments indicated that the binding of DCP to BSA primarily takes place in subdomain IIA. The binding distance (r) between DCP and the tryptophan residue of BSA ias 4.09 nm according to Förster’s theory of non-radioactive energy transfer. The conformational investigation demonstrated that the presence of DCP decreased the α-helical content of BSA and induced a slight unfolding of the polypeptides of protein, which confirmed the occurrence some micro environmental and conformational changes of BSA molecules.  相似文献   

7.
The interaction between erlotinib and human serum albumin (HSA) in simulated physiological conditions was investigated by spectroscopic methods. The results revealed that erlotinib caused the fluorescence quenching of HSA through a static quenching procedure. The binding constants at 293, 298, 303 and 308 K were obtained as 2.53 × 105, 8.13 × 104, 3.59 × 104 and 1.93 × 104 M?1, respectively. There may be one binding site of erlotinib on HSA at 298 K. The thermodynamic parameters indicated that the interaction between erlotinib and HSA was driven mainly by hydrogen bonding or van der Waals forces. Synchronous fluorescence spectra, UV–Vis spectra, circular dichroism and Fourier Transform infrared spectroscopy results showed erlotinib binding slightly changed the conformation of HSA with secondary structural content changes. Förster resonance energy transfer study revealed high possibility of energy transfer with erlotinib-Trp-214 distance of 3.48 nm. The results of the present study may provide valuable information for studying the distribution, toxicological and pharmacological mechanisms of erlotinib in vivo.  相似文献   

8.
There is much interest in the interactions between the active constituents of traditional Chinese medicine and biomolecules. By use of frontal analysis on an affinity column we have examined the binding interaction of berberine chloride (BC), a major active constituent of coptis, with bovine serum albumin (BSA) in 40 mM phosphate buffer, pH 7.0. Adsorption of BC on immobilized BSA was in accordance with the Langmuir isotherm, suggesting BC is binding to a single type of site on the immobilized BSA. The binding constant was 4.79 × 104 L mol?1 at 30 °C, less than the value of 6.61 × 104 L mol?1 obtained by fluorescence spectroscopy under the same buffer and temperature conditions. The effects of temperature on the retention, binding constant, and active binding sites, and on the percentage protein binding of BC, were also investigated. Thermodynamic measurements indicated that the increase in entropy was an important process promoting the interaction between BC and BSA.  相似文献   

9.
The interactions of two drugs, cryptotanshinone (CTS) and icariin, with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated using multiple spectroscopic techniques under imitated physiological conditions. CTS and icariin can quench the fluorescence intensity of BSA/HSA by a static quenching mechanism with complex formation. The binding constants of CTS–BSA, CTS–HSA, icariin–BSA and icariin–HSA complexes were observed to be 1.67 × 104, 4.04 × 104, 4.52 × 105 and 4.20 × 105 L·mol?1, respectively at 298.15 K. The displacement experiments suggested icariin/CTS are primarily bound to tryptophan residues of the proteins within site I and site II. The thermodynamic parameters calculated on the basis of the temperature dependence of the binding constants revealed that the binding of CTS–BSA/HSA mainly depends on van der Waals interaction and hydrogen bonds, and yet the binding of icariin–HSA/BSA strongly relies on the hydrophobic interactions. The binding distances between BSA/HSA and CTS/icariin were evaluated by the Föster non-radiative energy transfer theory. The results of synchronous fluorescence, 3D fluorescence, FT-IR and CD spectra indicates that the conformations of proteins were altered with the addition of CTS or icariin. In addition, the effects of some common ions on the binding constants of CTS/icariin to proteins are also discussed.  相似文献   

10.
The interaction between CdTe quantum dots (QDs) and bovine serum albumin (BSA) was systematically investigated by fluorescence, UV‐vis absorption and circular dichroism (CD) spectroscopy under physiological conditions. The experimental results showed that the fluorescence of BSA could be quenched by CdTe QDs with a static quenching mechanism, indicating that CdTe QDs could react with BSA. The quenching constants according to the modified Stern‐Volmer equation were obtained as 1.710×106, 1.291×106 and 1.010×106 L·mol?1 at 298, 304, and 310 K, respectively. ΔH, ΔS and ΔG for CdTe QDs‐BSA system were calculated to be ?33.68 kJ·mol?1, 6.254 J·mol?1·K?1 and ?35.54 kJ·mol?1 (298 K), respectively, showing that electrostatic interaction in the system played a major role. According to F?rster theory, the distance between Trp‐214 in BSA and CdTe QDs was given as 2.18 nm. The UV‐vis, synchronous fluorescence and CD spectra confirmed further that the conformations of BSA after addition of CdTe QDs have been changed.  相似文献   

11.
The interaction between drugs and receptors is particularly important in revealing the drug acting mechanism and developing new leads. In this work, α 1-Adrenoceptor (α 1-AR) from HEK293 cell line is purified and immobilized on the surface of macro-pore silica gel to prepare an high-performance affinity chromatography stationary phase for the pursuit of drug–receptor interactions by competition zonal elution. Naftopidil is found to have only one type of binding site to α 1-AR with an association constant of 1.45 × 106 M?1 and a concentration of binding sites of 1.56 × 10?6 M, while terazosin hydrochloride proves to present two kinds of binding site on the receptor at which the association constants are determined to be 1.61 × 105 M?1 and 2.06 × 103 M?1, and the corresponding concentrations of the binding sites are 1.56 × 10?6 M and 1.11 × 10?3 M, respectively. It is concluded that the stationary phase containing attached α 1-AR can be used to realize the binding of a drug to the receptor.  相似文献   

12.
This article reports the selective sensing ability of a newly synthesized calix[4]arene Schiff base (C4TSB) derivative. C4TSB exhibited strong turn-off fluorescence affinity for Hg2+ and Au3+. The selective sensing ability of receptor was investigated in the presence of different co-existing competing ions. The limit of detection for Hg2+ and Au3+ was determined as 1.9 × 10?5 and 1.0 × 10?6 M, respectively. Receptor forms 1:1 stoichiometric complex with both metals and their binding constants were calculated as 7.9 × 103 M?1 for Hg2+ and 5.7 × 103 M?1 for Au3+. Complexes were also characterized through FT-IR spectroscopy.  相似文献   

13.
Human saliva quantitative monitoring of clarithromycin (CLA) by chemiluminescence (CL) with flow injection analysis was proposed for the first time, which was based on the quenching effect of CLA on luminol–bovine serum albumin (BSA) CL system with a linear range from 7.5?×?10?4 to 2.0 ng/ml. This proposed approach, offering a maximum sample throughput of 100 h?1, was successfully applied to the quantitative monitoring of CLA levels in human saliva during 24 h after a single oral dose of 250 mg intake, with recoveries of 95.2~109.0 % and relative standard deviations lower than 6.5 % (N?=?7). Results showed that CLA reached maximum concentration of 2.28?±?0.02 μg/ml at approximately 3 h, and the total elimination ratio was 99.6 % in 24 h. The pharmacokinetic parameters including absorption rate constant (0.058?±?0.006 h?1), elimination rate constant (0.149?±?0.009 h?1) and elimination half-life time (4.66?±?0.08 h) were obtained. A comparison of human saliva and urine monitoring was also given. The mechanism study of BSA–CLA interaction revealed the binding of CLA to BSA is an entropy driven and spontaneous process through hydrophobic interaction, with binding constant K BSA–CLA of 4.78?×?106 l/mol and the number of binding sites n of 0.82 by flow injection–chemiluminescence model. Molecular docking analysis further showed CLA might be in subdomain IIA of BSA, with K BSA–CLA of 6.82?×?105 l/mol and ΔG of ?33.28 kJ/mol.  相似文献   

14.
Zinc isotope separations were studied by displacement chromatography using the chelating properties of malate, citrate and lactate exchange resin and EDTA as ligands. After each chromatographic operation, the heavier zinc isotopes were found to preferentially fractionated into the carboxylate complex solution phase. The separation coefficients (ε) for zinc isotope separation had the largest value and were obtained for the isotopic pairs 68Zn/64Zn (7.16 × 10?4) and 66Zn/64Zn (3.08 × 10?4), respectively, at 298 ± 1 K. The separation coefficient per unit mass differences (ε/ΔM) for the isotopic pair of 68Zn/64Zn was found to range around 1.55 × 10?4.  相似文献   

15.
In this review the fundamental question of how does protein-DNA or protein-RNA interactions affect the structures and dynamics of DNA, RNA, and protein is addressed. Two models of human serum albumin (HSA) bindings to calf-thymus DNA and transfer RNA (tRNA) are presented here. In these models the binding sites, stability and structural aspects of DNA-protein and RNA-protein are discussed. Electrostatic binding of DNA or RNA via backbone phosphate group to the positively charged amino acids on the surface of protein is prevailing. Two binding sites with K1 = 4.8 × 105 M?1 and K2 = 6.1 × 104 M?1 for protein-DNA and one binding affinity with K = 1.45 × 104 M?1 for protein-RNA are observed. A partial B to A-DNA transition is observed for protein-DNA complexes, while tRNA remains in A-family structure upon protein interaction.  相似文献   

16.
A new nickel(II) complex, [Ni(o-van-L-met)(phen)(CH3OH)] (o-van-L-met = Schiff base derived from o-vanillin and l-methionine, phen = 1,10–phenanthroline), has been synthesized and characterized by elemental analyses, IR spectra, and single-crystal X-ray diffraction. The crystal structure shows nickel is six-coordinate in a distorted octahedral geometry. In this crystal, molecules form a 2-D plane structure via hydrogen bonds and π–π interactions. The interaction of the complex with calf thymus DNA (CT-DNA) was investigated by absorption, fluorescence, circular dichroism (CD), spectroscopies, and viscosity measurement. The complex binds to CT-DNA in an intercalative mode with a binding constant of (4.7 ± 0.5) × 104 M?1. The interaction of the complex with bovine serum albumin (BSA) was also studied by the multispectroscopic methods. Results illustrated that the nickel(II) complex can effectively quench the intrinsic fluorescence of BSA via a static quenching mechanism and cause conformational changes. The binding constant Kb was (6.3 ± 1.6) × 104 M?1 and the binding site number n was 0.96 ± 0.04; its bind site was located within subunit IIA of BSA.  相似文献   

17.
The interaction of surfactin, a typical biosurfactant, with bovine serum albumin (BSA) was investigated by surface tension, fluorescence, freeze-fractured transmission electron microscopy (FF-TEM) and circular dichroism (CD) measurements. The surface tension curves of pure surfactin solution and surfactin/BSA solutions have different phenomena, where two obvious inflections determined as the critical aggregation concentration (cac) and the critical micelle concentration (cmc) appear for surfactin/BSA solutions. The higher BSA concentration, the higher cac and cmc values for surfactin/BSA solution. Fluorescence spectra show that the structure change of BSA is dependent on both surfactin and BSA concentration. The micropolarity, FF-TEM and CD results further demonstrate the interaction between BSA and surfactin. The excess free energy (ΔG0) of surfactin/BSA interactions have been obtained as ?6.13 and 5.32 kJ/mol for 1.0 × 10?6 and 3.8 × 10?6 mol/L BSA concentration, respectively. The binding ratio (R) determined for surfactin/BSA systems are higher than that reported for dirhamnolipid to BSA. Above all, it can be concluded that the hydrophobic interaction and the hydrogen bonds between surfactin and BSA play the key role for the high binding ratio for surfactin to BAS.  相似文献   

18.
Lei  Genhu  Yang  Rong  Zeng  Xiaolei  Shen  Yehua  Zheng  Xiaohui  Wei  Yinmao 《Chromatographia》2007,66(11):847-852

There is much interest in the interactions between the active constituents of traditional Chinese medicine and biomolecules. By use of frontal analysis on an affinity column we have examined the binding interaction of berberine chloride (BC), a major active constituent of coptis, with bovine serum albumin (BSA) in 40 mM phosphate buffer, pH 7.0. Adsorption of BC on immobilized BSA was in accordance with the Langmuir isotherm, suggesting BC is binding to a single type of site on the immobilized BSA. The binding constant was 4.79 × 104 L mol−1 at 30 °C, less than the value of 6.61 × 104 L mol−1 obtained by fluorescence spectroscopy under the same buffer and temperature conditions. The effects of temperature on the retention, binding constant, and active binding sites, and on the percentage protein binding of BC, were also investigated. Thermodynamic measurements indicated that the increase in entropy was an important process promoting the interaction between BC and BSA.

  相似文献   

19.
Citrate–nitrate combustion method was adopted for the synthesis of RE6UO12 (RE = Dy and Tb). These compounds were characterized by X-ray diffraction. Thermal expansion coefficient of these compounds were measured in the temperature range of 298–1,273 K by high temperature X-ray powder diffractometry (HT-XRD) and compared with other rare earth compounds reported in the literature. There was no observed phase transition in Dy6UO12, but Tb6UO12 showed a second-order phase transition at 670 K which was confirmed using differential scanning calorimeter. The average volume thermal expansion coefficient of Dy6UO12 in the temperature range of 298–1,273 K is (29.82 ± 4.02) × 10?6 and that of Tb6UO12 in the temperature range of 298–673 K is (13.76 ± 2.64) × 10?6 K?1.  相似文献   

20.
Affinity capillary electrophoresis was used to study quantitatively the noncovalent interactions between β-lactoglobulin (β-LG), a milk whey protein, and two lantibiotics, nisin (a dairy biopreservative lantibiotic) and duramycin (a bovine mastitis treatment lantibiotic). The study involved measuring the change in effective electrophoretic mobility of the lantibiotic as the concentration of β-LG in the background electrolyte is increased. Nonlinear regression analysis was used to model the dependence of the effective mobility of the lantibiotic on β-LG concentration in the BGE. Using this approach, binding constants were determined to be 3.1 (±0.2) × 108 M?1 for nisin and 2.2 (±0.1) × 108 M?1 for duramycin. Both binding constants were comparable indicating the similarity of affinity properties of nisin and duramycin towards β-LG. These results demonstrate that affinity capillary electrophoresis is a suitable method for characterizing the interaction between lantibiotics and β-LG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号