首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The influence of different steric and electronic properties of 2,5- and 3,5-dimethylphenols (2,5 and 3,5-DMP) on the type of interactions with Cobalt-exchanged montmorillonite (Co-MMT) was studied. The results of X-ray diffraction (XRD), IR-spectroscopy and thermal (TG, DTG) analysis show that phenol derivatives are intercalated into the interlayer space of montmorillonite. Thermal decomposition in the temperature interval 20–700 °C of Co-MMT with 3,5-DMP proceeds in four steps while Co-MMT with 2,5-DMP decompose only in three steps. These differences are connected with different acid–base interactions of individual phenol derivatives in the interlayer space of montmorillonite, which is in agreement with the results of IR-spectroscopy.  相似文献   

2.
The influence of Ca2+-, Cu2+- and Fe3+-exchanged montmorillonite (MMT) on the type of interaction with aniline in the interlayer space of MMT has been studied by means of X-ray powder diffraction and infrared spectra. Results of X-ray diffraction showed that aniline was successfully intercalated into the interlayer space of MMT. Based on IR spectra evaluation, aniline was indirectly coordinated through a water-bridge in Ca2+- and Fe3+-MMT and it was indirectly coordinated through a water-bridge as well as protonated in Cu2+-MMT (the spectrum of protonated aniline showed deformation and changes in the NH 3 + absorption at approximately 1521 cm?1). It is important to point out that Cu2+-MMT indirect coordination and protonation occur simultaneously.  相似文献   

3.
The gas-phase structures of protonated thymidine, [dThd + H]+, and its modified form, protonated 5-methyluridine, [Thd + H]+, are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy combined with electronic structure calculations. IRMPD action spectra are measured over the ranges extending from ~600 to 1900 cm–1 and ~2800 to 3800 cm–1 using the FELIX free electron laser and an optical parametric oscillator/amplifier (OPO/OPA) laser system, respectively. Comparisons between the B3LYP/6-311+G(d,p) linear IR spectra calculated for the stable low-energy conformers and the measured IRMPD spectra are used to determine the most favorable tautomeric conformations of [dThd + H]+ and [Thd + H]+ and to identify those populated in the experiments. Both B3LYP and MP2 levels of theory predict a minor 2,4-dihydroxy tautomer as the ground-state conformer of [dThd + H]+ and [Thd + H]+ indicating that the 2'-hydroxyl substituent of Thd does not exert a significant impact on the structural features. [dThd + H]+ and [Thd + H]+ share parallel IRMPD spectral profiles and yields in both the FELIX and OPO regions. Comparisons between the measured IRMPD and calculated IR spectra suggest that minor 2,4-dihydroxy tautomers and O2 protonated conformers of [dThd + H]+ and [Thd + H]+ are populated in the experiments. Comparison of this work to our previous IRMPD spectroscopy study of protonated 2'-deoxyuridine and uridine suggests that the 5-methyl substituent alters the preferences of O2 versus O4 protonation.
Graphical Abstract ?
  相似文献   

4.
In our previous study, we have observed that the chelation of various metal ions to the His‐tag motifs mostly involves the i and i+2 His residues for Ni2+, Cu2+, Zn2+ and Co2+. In the present study, various 200 ps molecular dynamics simulations were further conducted to investigate the chelating pathway of various metal ions to the His‐tag motif with 6 His residues (His‐tag6) and the binding affinities of these metal binding pockets towards these metal ions. The results indicate that His‐tag6 with the chelated metal ion located in positions His(2,4) or His(3,5) exhibits the strongest affinity for Ni2+ and Cu2+.K+ was found to be preferred to chelate in His(1,3) and His(3,5) coordinations. However, Fe3+ was found to have higher affinity towards His(1,3) and His(2,4) binding pockets. Our results also suggest that Ni2+ exhibits the highest binding affinity towards His‐tag6 over the other metal ions. Most of the structural variations of the His‐tag6 motif were from the Histidyl side chains during metal ion binding. In addition, there is an inverse linear correlation between the final chelated distance and the charge/volume ratio of metal ion. There is a negative correlation between the metal binding affinity and the averaged potential energy generated from the MD simulations.  相似文献   

5.
Birnessite type layered MnO6 oxides with increased crystallinity were synthesized from six carbohydrates and three dihydric phenols viz., dextrose, starch, fructose, galactose, maltose, lactose, catechol, resorcinol, quinol and KMnO4 through the formation of a sol–gel. All of the MnO6 oxides were characterized by powder XRD. The strong signal at 2θ ~ 12° corresponding to 7.4 Å refers to the Mn–Mn distance between the adjacent layers. The interlayer volume is dispersed with K+ ions and H2O molecules. The presence of interlayer K+ ions is indicated by a signal at 25°, corresponding to a distance of 3.5 Å. IR spectra of the oxides show signature bands at ca. 500 cm?1 due to the stretching modes occurring for MnO6 entity. A broad band observed at ca. 3300 cm?1 is due to interlayer water molecules. Thermal analysis indicated three stage decomposition with the formation of MnO2 at ca. 600 °C through the intermediate formation of Mn(OH) n . The MnO6 exhibited a remarkable CO2 scrubbing ability, which has also been investigated.  相似文献   

6.
The synthesis, crystal structure and electrochemical properties of a Ni(II) Schiff base complex, [Ni(L)]PF6 (where L is 2,4,9,11,11-pentamethyl-2,3,4 triaza-1-one-4-amine) are reported herein. The complex has been characterized by its electrochemical behavior, X-ray crystallographic structural analysis, physio-chemical methods and spectroscopic techniques. Electrospray mass spectroscopic analysis gives a dominant ion peak with m/z = 296 which corresponds to the {[Ni(L)]PF6–HPF6}+ fragment. Cyclic voltammograms for [Ni(L)]PF6, obtained in DMF (0.1 M Bu4NPF6) at a glassy carbon electrode with a scan rate of 100 mV s?1, exhibit reversible ([NiII(L)]+/[NiI(L)]) reduction and chemically irreversible ([NiII(L)]+/[NiIII(L)]2+→ electroactive product) oxidation processes at ?2.05 and 0.62 V, respectively. The diffusion coefficient, calculated using the Randles–Sevcik relationship, is 9.7 × 10?6 cms?1. Electrochemical studies reveal that the NiI reduced form of the complex is capable of catalyzing CO2 reduction at a potential that is thermodynamically more favorable than for the reduced [Ni(N,N′-ethylenebis(acetylacetoneiminato)]complex. Spectroelectrochemical analyses following bulk electrolysis of [Ni(L)]PF6 under CO2 revealed the formation of oxalate and bicarbonate.  相似文献   

7.
Differential scanning calorimetry(DSC) was used to study the effects of varying NaOH concentrations on the thermochemical curing properties of 2,4-dimethylol phenol (2,4-DMP), and 2,6-dimethylol phenol(2,6-DMP). Analysis of the DSC curves showed significant differences in the thermochemical curing behavior of these compounds with increasing NaOH:DMP molar ratios, in terms of the peak shape, position of the reaction peaks, (T p), along the temperature scale and energy of activation, E. The curves consisted of either a single, two or three exothermic peaks which indicated the occurrence of multiple reactions. One of these peaks was observed for the entire range of NaOH molar ratios, and is attributed to the self-condensation reaction. For the 2,4-DMP, NaOH had the effect of lowering the T p of curing from 212°C in the uncatalyzed state to135°C between 0.15–0.75 molar ratios. The lowest value of E, however, was 111 kJ mole−1, only through 0.45–0.60 molar ratios and this combined with the above, points to this concentration range as the optimum NaOH level. Similarly, the T p of curing for the 2,6-DMP was lowered from 211°C in the uncatalyzed state, to a minimum of 116°C at the NaOH:2,6-DMP molar ratio of 0.45. At this ratio, Ealso had the lowest value of 117 kJ mole−1 and this suggests that 0.45 molar ratio is the optimum NaOH level. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A new type of Ni2+-loaded MWCNT composite was prepared by mixing carboxylated multiwalled carbon nanotubes (MWCNTs) and Ni2+ ions and allowing them to interact electrostatically. The resulting composite was subsequently used as an electrocatalyst for glucose (Glu) oxidation. Compared with electrodes modified through the addition of free Ni2+ ions or MWCNTs, the Ni2+/MWCNT composite electrode showed greatly improved properties such as hydrophilicity. Investigations of the Ni2+/MWCNT composite electrode via inductively coupled plasma atomic emission spectroscopy and nitrogen adsorption–desorption isotherms verified that Ni2+ ions had been adsorbed onto the surfaces of the MWCNTs in the composite. As expected, a Ni2+/MWCNT composite-based sensor showed extraordinary electrocatalytic performance in Glu oxidation. In the concentration range 0–4.3 mM, a good linear relationship between the Glu added and the current generated was observed, with a correlation coefficient (R 2) of 0.9988. The detection limit and sensitivity were calculated to be 0.081 μM and 2285 μA mM?1 cm?2, respectively. Finally, the new method was successfully applied to determine the Glu in a human blood sample. Recoveries of >100%, indicative of high reliability, accuracy, and precision, were obtained.  相似文献   

9.
2,4-Bis(3,5-dimethylpyrazol-1-yl)-6-methoxyl-1,3,5-triazine(bpt) has been synthesized by using a new, simple and general method with high yields. Reactions of bpt with Ni(ClO4)2·6H2O and Zn(ClO4)2·6H2O in methanol gave mononuclear complex [Ni(bpt)2]· (ClO4)2·H2O and ternary complex [Zn(mpt)2(dmp)](ClO4)2 respectively, where mpt (2,4-dimethoxy-6-(3,5-dimethyl- pyrazol-1-yl)-1,3,5-triazine) and dmp(3,5-dimethylpyrazole) are the alcoholysis products of bpt in the presence of Zn2+ ion. A possible mechanism for this catalytic reaction was proposed. X-ray crystal structure for ligand bpt, Ni and Zn complexes are reported. The protonated form of the ligand bpt crystallizes as its perchlorate salt including one molecule of water, [Hbpt·H2O·ClO4]. The proton is located on one pyrazole N-atom. [Hbpt·H2O·ClO4], in which [Hbpt]+ is in cis-cis conformation, are packed in slipped stacks of approximately parallel layers. The Π -Π overlap interactions between the non-protonized pyrazoles of the adjacent layers give a zigzag arrangement of the planar aromatic [Hbpt]+ molecules. In [Ni(bpt)2](ClO4)2·H2O, bpt are meridionally three-coordinated with Ni2+. The coordination sphere around Ni2+ is a slightly distorted square bipyramid, where four pyrazole nitrogen atoms occupy the basal positions and two triazine nitrogen atoms the apical one. In [Zn(mpt)2(dmp)](ClO4)2, the Zn atom is coordinated with a pair of bidentate mpt ligands and one monodentate dmp ligand, forming a distorted trigonal bipyramid, where the two triazine nitrogen atoms of mpt and one nitrogen atom of dmp occupy the basal positions, and the two pyrazole nitrogen atoms of mpt the apical one.  相似文献   

10.
《Analytical letters》2012,45(17):3074-3087
Abstract

Insoluble porous solid, macrocyclic 22-membered ring, 1-oxa-6,9,12,15,18-pentaaza-2,22-disilacyclododocosane polysiloxane ligand system has been prepared by the reaction of a macro-silane agent with tetraethylorthosilicate. The macro-silane agent was prepared by the reaction of imino-bis(N-2-aminoethylacetamide) ligand with 3-iodopropyltrimethoxysilane in 1:3 molar ratio. The new prepared polysiloxane system exhibits variable potentials for the extraction of metal ions (Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, and Pb2+) from aqueous solutions. The ligand system shows high capacity to extract silver, lead, and mercury. Chemisorption of the metal ions by the ligand system at the optimum conditions was found in the order Ag + > Pb2+ > Hg2+ > Cu2+ > Ni2+ > Fe3+ > Co2+ > Cd2+ > Zn2+.  相似文献   

11.
Under conditions of chemical ionization in the high pressure source of a mass spectrometer, the α-distonic CC ring-opened oxirane radical cation transfers a methylene group to 1,2-, 1,3- and 1,4-dichlorobenzene. The structures of the M + 14]·+ product ions have been established by collisionally induced dissociation of these ions compared with reference ions and application of principal component analysis. 1,2-Dichlorobenzene yields 80% 2-chlorobenzyl chloride, 5% 2,3-dichlorotoluene and 15% 3,4-dichlorotoluene. The [M + 14]·+ ions from 1,3-dichlorobenzene are 64–67% 3-chlorobenzyl chloride, 27–28% 2,6-dichlorotoluene and 7% 2,4- or 3,5-dichlorotoluene. From 1,4-dichlorobenzene mainly 4-chlorobenzyl chloride is formed, together with some 2,5-dichlorotoluene. In this case there is also an unidentified contribution, probably by 1,4-dichlorocycloheptatriene ions. Possible formation of distonic product ions does not occur in the cases of 1,2- and 1,3-dichlorobenzene, and from 1,4-dichlorobenzene it is considered to be unlikely.  相似文献   

12.
An asymmetric dinuclear ligand, N-4-methyl-homopiperazine-N′-[N-(2-pyridylmethyl)-N-2-(2-pyridylethyl)amine]-1,3-diaminopr-opan-2-ol (HL) and two dinuclear Ni(II) complexes [Ni2L(DNBA)2]ClO4 (1) and [Ni2L(BPP)2]ClO4·2H2O (2) (3,5-dinitrobenzoic acid, bisphenyl phosphate) have been synthesized and characterized. Single crystal X-ray crystallographic analysis reveals that the coordination environments of the two Ni(II) atoms in complexes 1 and 2 are five and six coordinate, respectively. The phosphodiesterase activity of a di-Ni(II) complex Ni2L formed in situ from a 2:1 mixture of Ni2+ and HL was investigated using bis(4-nitrophenyl) phosphate (BNPP) as the substrate. The pH dependence of the rate of BNPP cleavage in aqueous buffer indicates a bell-shaped profile with an optimum at about pH 8.4, which is parallel to the formation of the dinuclear species [Ni2LOH]2+ according to UV–vis spectroscopy. At pH 8.4 and 25 °C, the k cat (7.40 × 10?5 s?1) is ca.106-fold higher than that of the uncatalyzed reaction. A possible mechanism for BNPP cleavage promoted by Ni2L is proposed.  相似文献   

13.
Nitrate from the biological nitrification of ammonium fertilisers causes environmental damage via groundwater contamination and nitrous oxide emission. To limit nitrate formation, nitrification inhibitors (NIs) are used in conjunction with ammonium-based fertilisers in agricultural land management. The NI 3,4-dimethyl-1H-pyrazole phosphate (DMPP), with an active constituent 3,4-dimethyl-1H-pyrazole (3,4-DMP), is commercially available and its effectiveness and behaviour in soils have been studied. However, only one method for the analysis of 3,4-DMP in soil has been reported and relies on extensive sample preparation to remove matrix interferences prior to HPLC analysis. A new method was developed to allow monitoring of 3,4-DMP residues in soil after appliaction, which utilises the greater selectivity and sensitivity of LC-MS/MS. A 3,4-DMP limit of quantitation of 0.5 ng/g was achieved, which is 10 times more sensitive than the published method, and was achieved using 10,000 times less 3,4-DMP injected on-column, with an injection volume 100 times smaller. Four internal standards were evaluated to improve the accuracy of the extraction method. The isotope-substituted structural isomer 3,5-dimethyl pyrazole-15N2 provided the best and most consistent recoveries over the 300-fold concentration range tested. The new method was employed to investigate the persistence and mobility of 3,4-DMP in an agricultural soil. 3,4-DMP had a half-life of 5 days in the top 0.5 cm of soil at normal and double recommended application rates, while half-lives in the 2.5 cm soil profile were 28 and 21 days, respectively. 3,4-DMP mobility in the clay loam soil tested was low, with only 15–25% of applied 3,4-DMP detected below the top 0.5 cm, suggesting the loss of 3,4-DMP was either due to volatilisation or degradation, rather than leaching into the soil profile.  相似文献   

14.
Electrophilic trisubstituted ethylenes, dihalogen ring-substituted ethyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C2H5 (where R is 2,3-diCl, 2,4-diCl, 2,6-diCl, 3,4-diCl, 3,5-diCl, 2,3-diF, 2,4-diF, 2,5-diF, 2,6-diF, 3,4-diF, 3,5-diF) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and ethyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is 3,4-diCl (1.89) > 2,4-diCl (1.84) > 3,5-diCl (1.40) > 2,6-diCl (1.21) > 2,4-diF (1.16) > 2,3-diF (1.01) > 2,3-diCl (0.74) > 3,4-diF (0.52) > 2,6-diF (0.45) > 3,5-diF (0.44) > 2,5-diF (0.33). Relatively high Tg of the copolymers in comparison with that of polystyrene indicates a decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 250–500°C range with residue (2.6–5.0 wt%), which then decomposed in the 500–800°C range.  相似文献   

15.
A porous metal–organic framework (MOF), [Ni2(dobdc)(H2O)2]?6 H2O (Ni2(dobdc) or Ni‐MOF‐74; dobdc4?=2,5‐dioxido‐1,4‐benzenedicarboxylate) with hexagonal channels was synthesized using a microwave‐assisted solvothermal reaction. Soaking Ni2(dobdc) in sulfuric acid solutions at different pH values afforded new proton‐conducting frameworks, H+@Ni2(dobdc). At pH 1.8, the acidified MOF shows proton conductivity of 2.2×10?2 S cm?1 at 80 °C and 95 % relative humidity (RH), approaching the highest values reported for MOFs. Proton conduction occurs via the Grotthuss mechanism with a significantly low activation energy as compared to other proton‐conducting MOFs. Protonated water clusters within the pores of H+@Ni2(dobdc) play an important role in the conduction process.  相似文献   

16.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M2+ (aq) + SrL2+ (nb) $ \Leftrightarrow $ ML2+ (nb) + Sr2+ (aq) taking place in the two-phase water–nitrobenzene system (M2+ = Ca2+, Pb2+, Cu2+, Zn2+, Cd2+, $ {\text{UO}}_{2}^{2 + } $ , Mn2+, Co2+, Ni2+; L = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Moreover, the stability constants of the ML2+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following order: Cd2+ < Ca2+ < Mn2+ < Cu2+, Zn2+ <  $ {\text{UO}}_{2}^{2 + } $ , Co2+ < Ni2+ < Sr2+ < Pb2+.  相似文献   

17.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M2+(aq) + Sr2+(nb) ? M2+(nb) + Sr2+(aq) taking part in the two-phase water–nitrobenzene system (M2+ = Mg2+, Ca2+, Ba2+, Cu2+, Zn2+, Cd2+, Pb2+, ${\text{UO}}_{2}^{2 +} $ , Mn2+, Fe2+, Co2+, Ni2+; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the individual extraction constants of the M2+ cations in the mentioned two-phase system were calculated; they were found to increase in the following cation order: ${\text{UO}}_{2}^{2 + } $  < Zn2+, Ni2+ < Cu2+, Cd2+ < Co2+ < Mg2+ < Ca2+ < Mn2+, Fe2+ < Sr2+ < Pb2+ < Ba2+.  相似文献   

18.
Three Ni(II) complexes of cresol-based Schiff-base ligands, namely [Ni2(L1)(NCS)3(H2O)2], (1) [Ni2(L2)(CH3COO)(NCS)2(H2O)] (2) and [Ni2(L3)(NCS)3] (3), (where L1 = 2,6-bis(N-ethylpyrrolidineiminomethyl)-4-methylphenolato, L2 = 2,6-bis(N-ethylpiperidineiminomethyl)-4-methylphenolato and L3 = 2,6-bis{N-ethyl-N-(3-hydroxypropyl iminomethyl)}-4-methylphenolato), have been synthesized and structurally characterized by X-ray single-crystal diffraction in addition to routine physicochemical techniques. Density functional theory calculations have been performed to understand the nature of the electronic spectra of the complexes. Complexes 1?C3 when reacted with 4-nitrophenyl phosphate in 50:50 acetonitrile?Cwater medium promote the cleavage of the O?CP bond to form p-nitrophenol and smoothly convert 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) either in MeOH or in MeCN medium. Phosphatase- and catecholase-like activities were monitored by UV?Cvis spectrophotometry and the Michaelis?CMenten equation was applied to rationalize all the kinetic parameters. Upon treatment with urea, complexes 1 and 2 give rise to [Ni2(L1)(NCS)2(NCO)(H2O)2] (1??) and [Ni2(L2)(CH3COO)(NCO)(NCS)(H2O)] (2??) derivatives, respectively, whereas 3 remains unaltered under same reaction conditions.  相似文献   

19.
A new Schiff base fluorescence probe, 3-Allylsalicylaldehyde salicylhydrazone (L), for Mg2+ was designed and synthesized. The fluorescence of the sensor L was enhanced remarkably by Mg2+ with 2:1 binding ratio, and the binding constant was determined to be 1.02 × 107 M?1. Probe L had high sensitivity for Mg2+ in a solution of DMF/water (4:1, v/v, pH 7.5), and the detection limit was 4.88 × 10?8 mol/L. Common coexistent metal ions, such as K+, Na+, Ag+, Ca2+, Zn2+, Ba2+, Bi2+, Cu2+, Ni2+, Hg2+, Fe3+ , and Al3+, showed little or no interference on the detection of Mg2+ in solution. The fluorescence probe L, which was successfully used for the determination of trace Mg(II) in real samples, was shown to be promising for liquid-phase extraction coupled with fluorescence spectra.  相似文献   

20.
Dibenzo-18-crown-6 (DBC) was immobilized on crosslinked polyvinyl alcohol (CPVA) microspheres, resulting in polymer-supported crown ether DBC–CPVA. The complexation adsorption behaviors of DBC–CPVA microspheres towards diverse metal ions were investigated. The experimental results show that among alkali metal ions, the complexation adsorption ability of DBC–CPVA for K+ ion is the strongest, and crown ether-metal complex in 1:1 ratio is formed, exhibiting a high adsorption capacity. The adsorption capacities of alkali metal ions on DBC–CPVA are in the order: K+ ? Na+ > LI+ > Rb+ > Cs+. Among several divalent metal ions, DBC–CPVA exhibits stronger adsorption ability towards Zn2+ and Co2+ ions, and a “sandwich”-type complex is formed probably in a molar ratio of 2:1 between the immobilized DBC and Zn2+ ion as well as between the immobilized DBC and Co2+ ion. The adsorption capacities of the several divalent metal ions on DBC–CPVA are in the order: Zn2+ > Co2+ ? Cd2+ > Cu2+ > Ni2+ > Pb2+. The complexation adsorption is exothermic physical physisorption process, and raising temperature leads to the decrease of the adsorption capacity. At the same time, the entropy during the complexation adsorption decreases, so the adsorption process is driven by the decrease of enthalpy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号