首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An unconventional, flexible, disposable paper-based selective sensing platform for dopamine in the presence of ascorbic acid, suitable for wearable electronics, has been described for the first time in this work. The carbon nanotube ink-modified paper (CNIMP) in the presence of an anionic surfactant was able to discriminate effectively between dopamine and ascorbic acid thereby alleviating the difficulties associated with the sensing of dopamine in the presence of high concentration of ascorbic acid which undergoes oxidation at similar potential. The CNIMP electrode provided a large surface area in addition to its flexibility and disposability which was 25 times higher compared to a glassy carbon electrode of the same geometric area. The conductivity of the CNIMP electrodes as measured by four probe conductivity measurements was reasonably high of the order of 1.7 × 10?2 S cm?1 facilitating its usefulness for the development of flexible sensors. The microscopic features of the electrodes showed the dense coverage and even distribution of carbon nanotubes on the surface with the surfactant molecules uniformly encapsulated on the surface.  相似文献   

2.
Herein, we reported a titanium oxide (TiO2) modified activated carbon nanocomposite that showed advantageous characteristics in terms of electro-conductivity, catalytic activity and surface area. The designed nanocomposite was employed to modify the screen printed carbon electrode transducer surface in the construction of an electrochemical sensor. The electrode surface modification was characterised by cyclic voltammetry and impedimetric studies. The modified transducer surface was subsequently used for the detection of four phenolic endocrine disruptors, p-nitrophenol, hydroquinone, catechol and 1-naphtol. Under optimal conditions, TiO2 modified activated carbon sensor was evaluated by differential pulse voltammetry showing a good linearity with correlation coefficients higher than 0.99. It showed, in parallel, a high sensitivity where the detection limits were 348 ng/L, 110.1 ng/L, 3.3 ng/L and 7.2 µg/L for the respective studied compounds (S/N = 3). Finally, we validated the method with river water samples, and good recovery values were obtained showing the potential application of the reported biosensor.  相似文献   

3.
Porous carbon nanofibers were prepared through electrospinning a blend solution of polyacrylonitrile and poly(L ‐lactide), followed by carbonization at different temperatures and in different atmospheres. Structural features of these porous carbon nanofibers were characterized using scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, X‐ray powder diffraction, and Raman spectroscopy. Surface area and pore structure were evaluated using the nitrogen adsorption technique. It was found that carbon fibers prepared by this scalable and relatively economical method exhibited a porous surface morphology with high specific surface area and large pore volume. The fiber diameter, surface area, pore volume, bulky crystalline structure, and surface crystalline structure of these carbon nanofibers showed a strong dependence on the polymer precursor composition and carbonization condition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 493–503, 2009  相似文献   

4.
A nitrogen (N)-doped mesoporous carbon material exhibiting ultra-high surface area was successfully synthesized from sheep bones via a facile and low-cost method. The obtained carbon material had an ultra-high specific surface area of 1961 m2 g?1 and provided rich active sites for the oxygen reduction reaction (ORR), which in turn resulted in high electrocatalytic activity. It was found that the pore size distribution for the newly prepared carbonaceous material fell in the range of 1–4 nm. Benefiting from its high surface area and the presence of pyridine-N and quaternary-N species, the as-prepared carbon material exhibited excellent ORR activity in an oxygen-saturated 0.1 M KOH solution, compared to commercial Pt/C (10 wt%). Due to its high ORR catalytic activity, stability and low-cost, using sheep bone as C and N precursors to produce N-doped carbon provides an encouraging step toward the goal of replacing commercial Pt/C as fuel cell cathode electrocatalyst.  相似文献   

5.
Nanostructured γ-Al2O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2 adsorption-desorption, TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2·g−1 and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and O2 to dry reforming feed increased the methane conversion and led to carbon free operation in combined processes.  相似文献   

6.
To decompose carbon dioxide, which is a representative greenhouse gas, a 3-phase gliding arc plasmatron device was designed and manufactured to examine the decomposition of CO2, either alone or in the presence of methane with and without water vapour. The changes in the amount of carbon dioxide feed rate, the methane to carbon dioxide ratio, the steam to carbon dioxide ratio, and the methane to steam ratio were used as the parameters. The carbon dioxide conversion rate, energy decomposition efficiency (EDE), carbon monoxide and hydrogen selectivity, and produced gas concentration were also investigated. The maximum values of the carbon dioxide conversion rate, which is a key indicator of carbon dioxide decomposition, in different cases were compared. The maximum carbon dioxide conversion rate was 12.3 % when pure carbon dioxide was supplied; 34.5 % when methane was injected as a reforming additive; 7.8 % when steam was injected as a reforming additive; and 43 % when methane and steam were injected together. Therefore, this could be explained that the methane-and-steam injection showed the highest carbon dioxide decomposition, showing low EDE as 0.01 L/min W. Furthermore, the plasma produced carbon-black was compared with commercial carbon-black chemicals through Raman spectroscopy, surface area measurement and scanning electron microscopy. It was found that the carbon-black that was produced in this study has the high conductivity and large specific surface area. Our product makes it suitable for special electric materials and secondary battery materials applications.  相似文献   

7.
以花生壳为原料,经KOH活化制备花生壳基多孔碳(HC)。氮气吸附-脱附研究表明,所获得的多孔碳的总表面积高达1 645 m2·g-1。采用浸渍还原法制备了以HC为载体的Pd-Co/HC催化剂。X射线衍射(XRD)和X射线光电子能谱(XPS)分析表明,催化剂中的Co主要以Co和Co O的形式存在,Co进入Pd的晶格并形成Pd-Co合金。Pd-Co/HC0.5-700的透射电子显微镜(TEM)结果显示,Pd-Co纳米颗粒具有较小粒径(约4 nm)且成功地分散在HC上。Pd-Co/HC0.5-700在碱性介质中电催化氧化甲醇时表现出优秀的电催化活性、稳定性和CO耐受性,这种显著的高性能可以归因于生物质载体大的表面积和Co的成功掺杂。  相似文献   

8.
High specific capacitance and low cost are the critical requirements for a practical supercapacitor. In this paper, a new activated carbon with high specific capacitance and low cost was prepared, employing cotton stalk as the raw material, by using the phosphoric acid (H3PO4) chemical activation method. The optimized conditions were as follows: the cotton stalk and activating agent with a mass ratio of 1:4 at an activation temperature of 800 °C for 2 h. The samples were characterized by nitrogen adsorption isotherms at 77 K. The specific surface area and pore volume of activated carbon were calculated by Brunauer–Emmett–Teller (BET) and t-plot methods. With these experimental conditions, an activated carbon with a BET surface area of 1,481 cm2?g?1 and micropore volume of 0.0377 cm3?g?1 was obtained. The capacitance of the prepared activated carbon was as high as 114 F?g?1.The results indicate that cotton stalk can produce activated carbon electrode materials with low cost and high performance for electric double-layer capacitor.  相似文献   

9.
采用简易浸泡法和一步碳化/活化法制备香菇生物质基氮掺杂微孔碳材料(NMCs),利用扫描电子显微镜(SEM)、透射电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对材料的结构形貌进行表征,并研究了其超级电容特性。测试结果表明,NMCs的微孔比表面积高达1 594 m~2·g~(-1),且拥有更高数量的含氮官能团,其吡啶型含氮官能团比例也有所提高,展现出优异的超级电容特性。在0.5 A·g~(-1)的电流密度下,其比容量高达325 F·g~(-1),当电流密度上升到20 A·g~(-1)时,其比电容仍然高达180 F·g~(-1),表现出优异的倍率性能;同时,在5 A·g~(-1)的电流密度下,电极经历5 000次充放电循环后具有97.7%的比容量保持率,展现出优异的循环稳定性。这主要归因于NMCs超高的微孔比表面积和丰富的含氮官能团。  相似文献   

10.
In this study, the surface chemistry and structure of methyl-substituted silica gels and porous oxycarbide glasses were investigated. FTIR was used to measure the relative concentration of Si−CH3 and Si−OH as a function of the degree of methyl-substitution and the pyrolysis temperature. The gels and glasses were further heated, dehydrated or hydrated, in situ, within the FTIR spectrometer. In the temperature range of 800–850°C, high surface area oxycarbide glasses were created with no detectable surface hydroxyl groups. Oxycarbide glasses synthesized in argon at 700°C displayed a weak band for surface hydroxyl groups and reversible physisorption of water, while those synthesized at 850/900°C showed a complete absence of surface hydroxyl groups and the formation of vicinal silanols upon chemisorption of water. Isolated silanols were observed upon heat treatment in vacuum. Formation of aromatic carbon species was found to correlate with the decomposition of the methyl groups. The oxycarbide surface is quite stable to densification (presumably due to elemental carbon on the pore surfaces). In the absence of oxygen, porous silicon oxycarbide glass powders maintain surface areas >200 m2/g at 1200°C. However, oxidizing species in the atmosphere deplete the aromatic carbon species, and the glasses lose surface area.  相似文献   

11.
活性碳纳米管的制备及其在有机电解液中的电容性能研究   总被引:1,自引:0,他引:1  
徐斌  吴锋  苏岳锋  曹高萍  陈实  杨裕生 《化学学报》2007,65(21):2387-2392
以KOH为活化剂对碳纳米管进行化学活化制备双电层电容器用高比表面积活性碳纳米管. 采用TEM和N2吸附法表征活性碳纳米管的结构, 采用恒流充放电、循环伏安、交流阻抗等评价其在1 mol•L-1 Et4NBF4/PC中的电容性能. 随活化剂用量增大、活化温度升高和活化时间的延长, 活性碳纳米管的比表面积和比电容都呈增大的趋势. 活化剂用量为3∶1, 800 ℃活化4 h制备的活性碳纳米管的比表面积663 m2•g-1, 比活化前提高了3倍, 其比电容达57.2 F• g-1, 比活化前提高了2倍. 将活性碳纳米管的比电容与其比表面积相关联, 发现两者之间具有非常好的线性关系, 并分析了原因.  相似文献   

12.
The present paper describes an easy and quick synthesis of hollow core mesoporous shell carbon (HCMSC) simply templated from unpretreated solid core mesoporous shell silica using a cheap precursor like sucrose. Physical characterizations showed uniform spherical carbon capsules with a hollow macroporous core of ca. 305- and 55-nm-thick mesoporous shell, forming a well-developed 3-D interconnected bimodal porosity. High specific surface area and large pore volume were also confirmed, suggesting the obtained HCMSC as a promising catalyst support. HCMSC-supported Pt (nominal 20 wt.%) with an average Pt particle size of 1.9 nm was synthesized by wet impregnation, and a signal of strong interaction between carbon support and platinum was confirmed by X-ray photoelectron spectroscopy. In cyclic voltammetry and linear sweep voltammetry tests, the Pt/HCMSC electrode showed significantly higher electrocatalytic activity for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) if compared with commercial Pt/Vulcan catalyst. The durability tests by cyclic voltammetry showed for the Pt/HCMSC a lower electrochemical active surface area loss than the commercial one in acidic solution. All the primary tests suggested that the Pt/HCMSC, due to its particular structure and the high dispersion of noble metal particles, is a promising catalyst for fuel cell applications, for MOR and ORR.  相似文献   

13.
Porous carbon materials with high surface area and different pore structure have been successfully prepared by phenolic resin combined with polyvinyl alcohol (PVA) and KOH as activation agents. The surface morphology, structure, and specific surface area of the carbon materials were studied by scanning electron microscopy, X-ray diffraction, and nitrogen sorption measurement, respectively. Furthermore, the effects of specific surface area, pore structure, and electrolyte on electrochemical properties were investigated by galvanostatic charge–discharge measurement. The results show that KOH–PVA-activated carbon materials display specific capacitance as high as 218 F?g?1 in 30 wt.% KOH aqueous electrolyte, 147 F?g?1 in 1 M LiPF6/(ethylene carbonate (EC) + dimethyl carbonate) (1:1?v/v), and 115 F?g?1 in 1 M Et3MeNBF4/propylene carbonate organic electrolyte, respectively. In addition, the carbon materials demonstrate long-term cycle stability, especially the AK3P-0.30 in aqueous electrolyte and the AK2P-0.30 with excellent rate capability in organic electrolyte. These reveal that the existence of a micro-mesoporous structure of activated carbon is beneficial to store energy in an aqueous supercapacitor and broad pore size distribution of activated carbon is favorable to energy storage in an organic supercapacitor. The carbon materials with pore size distribution in different ranges improve the electrochemical performance of supercapacitor in different electrolytes. A new pore-expand agent (PVA combining with KOH) was used to obtain porous carbons with enhanced properties for supercapacitor.  相似文献   

14.
An activated carbon was prepared from a polyaniline base using K2CO3 as an activating agent. The morphology, surface chemical composition, and surface area of the as-prepared carbon materials were investigated by scanning electron microscope, X-ray photoelectron spectroscopy, and Brunauer?CEmmett?CTeller measurement, respectively. Electrochemical properties of the as-prepared sample were studied by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6?mol?L?1 KOH aqueous solution. Compared with the non-activated carbon, activated carbon showed superior capacitive performance. The activation carbon presented a high specific gravimetric capacitance of 210?F?g?1. The good electrochemical performance of the activated carbon was ascribed to well-developed micropores, high surface area, the presence of nitrogen and oxygen functional groups, and larger pore volume.  相似文献   

15.

Activated carbon for supercapacitor electrode was prepared from polyaniline using chemical activation with ZnCl2. The morphology, surface chemical composition, and surface area of the as-prepared carbon materials were investigated by scanning electron microscope, atomic force microscopy, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller measurement, respectively. Electrochemical characteristics were evaluated by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy tests in 6.0 mol L−1 KOH aqueous solution. The electrochemical measurements showed that ZnCl2 activation led to better capacitive performances. The activated carbon presented a high-specific gravimetric capacitance of 174 F g−1, with rectangular cyclic voltammetry curves at a scan rate of 2 mV s−1, and it remained 93% even at a high scan rate of 50 mV s−1. These demonstrated that activated carbon would be a promising electrode material for supercapacitors.

  相似文献   

16.
A series of nitrogen-containing carbon spheres (CS) was prepared using the modified Stöber method. These CS were synthesized by using resorcinol and formaldehyde as carbon precursors, melamine as nitrogen precursor and ammonia as a polymerization reaction catalyst. Hydrothermal treatment followed by activation of these polymer spheres resulted in highly porous nitrogen-containing CS. Elemental analysis and N2 adsorption showed that the aforementioned CS exhibited high surface area (reaching 1,610 m2/g) with large fraction of fine micropores (volume of micropores smaller than 1 nm was estimated to be 0.40 cm3/g) and comparatively high nitrogen content (about 4.0 at.%). Interestingly, high CO2 adsorption capacities, 4.4 and 6.9 mmol/g, were obtained for these CS at 1 bar and two temperatures, 25 and 0 °C, respectively.  相似文献   

17.
《中国化学会会志》2017,64(9):1041-1047
Activated carbons with a high mesoporous structure were prepared by a one‐stage KOH activation process without the assistance of templates and further used as adsorbents for CO2 capture. The physical and chemical properties as well as the pore structures of the resulting mesoporous carbons were characterized by N2 adsorption isotherms, scanning electron microscopy (SEM ), X‐ray diffraction (XRD ), Raman spectroscopy, and Fourier transform infrared (FTIR ) spectroscopy. The activated carbon showed greater specific surface area and mesopore volume as the activation temperature was increased up to 600°C, showing a uniform pore structure, great surface area (up to ~815 m2/g), and high mesopore ratio (~55%). The activated sample exhibited competitive CO2 adsorption capacities at 1 atm pressure, reaching 2.29 and 3.4 mmol/g at 25 and 0°C, respectively. This study highlights the potential of well‐designed mesoporous carbon as an adsorbent for CO2 removal and widespread gas adsorption applications.  相似文献   

18.
以蔗糖为碳源、尿素为氮源、草酸钾为活化剂,通过简单的研磨和高温碳化制备了具有超高比表面积(大于3 000 m2·g-1)的氮掺杂多孔碳材料。采用多种手段对多孔碳材料的微观形貌、比表面积、孔结构和表面氮物种进行了表征,探究了不同温度下草酸钾和尿素对碳材料的比表面积、氮含量和超级电容性能的影响。结果表明,仅使用草酸钾作为活化剂制备的碳材料KC-800的比表面积为1 114 m2·g-1,而同时使用草酸钾和尿素制备的样品KNC-800的比表面积高达3 033 m2·g-1。在以6.0mol·L-1 KOH为电解液的三电极体系中,当电流密度为0.5 A·g-1时,KNC-800的比电容为405 F·g-1,而KC-800的比电容仅为248 F·g-1。这表明草酸钾和尿素的加入显著提高了多孔碳材料的比表面积和超级电容性能。电容贡献分析表明,KNC-800的双电层电容值和赝电容值均...  相似文献   

19.
Production of hydrogen is a challenging task and have significant impact in the recent scenario. The alumina supported iron oxide nanoparticle synthesized using non‐ionic surfactant Triton‐X was found very effective for steady production of hydrogen through methane decomposition reaction. The high surface area, easily reducible catalyst calcined at 500 °C and 800 °C temperature showed steady activity towards methane decomposition reaction. At a higher reaction temperature there was catalyst deactivation. The doping of MgO facilitated particle growth rendering the poor catalytic activity. The TPR study showed that reducibility of TPR was difficult in presence of MgO additive. The formation of Fe? Mg? Al solid solution confirmed by XRD study was found mainly responsible for the lower catalytic activity. The bamboo‐shaped carbon nanotube formed from 20 % Fe/Al2O3 catalyst which is mainly because of the poor wetting property of quasi‐liquid metal and carbon nanotube.  相似文献   

20.
In this work, porous carbon with a high specific surface area as electrode materials for supercapacitors are obtained by a carbonization process at various temperatures from 700 °C to 1000 °C without activation process using poly(vinylidene fluoride) (PVDF) as a carbon precursor. The electrochemical performance is characterized by cyclic voltammetry and galvanostatic charge–discharge cycling performance using two-electrode system in 6.0 M KOH as an aqueous electrolyte. The results indicate that carbonization temperature significantly affected the specific surface area and pore volume of the PVDF-derived carbons and their capacitive behavior. In particular, the electrochemical performance of the prepared PVDF-derived carbon is determined by both the electric double-layer capacitance and the pseudo-capacitance resulting from the residual surface functional groups on PVDF-derived carbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号