首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
This paper investigates the relationship between the minimal Hellinger martingale measure of order qq (MHM measure hereafter) and the qq-optimal martingale measure for any q≠1q1. First, we provide more results for the MHM measure; in particular we establish its complete characterization in two manners. Then we derive two equivalent conditions for both martingale measures to coincide. These conditions are in particular fulfilled in the case of markets driven by Lévy processes. Finally, we analyze the MHM measure as well as its relationship to the qq-optimal martingale measure for the case of a discrete-time market model.  相似文献   

2.
We discuss joint temporal and contemporaneous aggregation of NN independent copies of AR(1) process with random-coefficient a∈[0,1)a[0,1) when NN and time scale nn increase at different rate. Assuming that aa has a density, regularly varying at a=1a=1 with exponent −1<β<11<β<1, different joint limits of normalized aggregated partial sums are shown to exist when N1/(1+β)/nN1/(1+β)/n tends to (i) ∞, (ii) 00, (iii) 0<μ<∞0<μ<. The limit process arising under (iii) admits a Poisson integral representation on (0,∞)×C(R)(0,)×C(R) and enjoys ‘intermediate’ properties between fractional Brownian motion limit in (i) and sub-Gaussian limit in (ii).  相似文献   

3.
For α∈RαR, let pR(t,x,x)pR(t,x,x) denote the diagonal of the transition density of the αα-Bessel process in (0,1](0,1], killed at 0 and reflected at 1. As a function of xx, if either α≥3α3 or α=1α=1, then for t>0t>0, the diagonal is nondecreasing. This monotonicity property fails if 1≠α<31α<3.  相似文献   

4.
In this paper we discuss existence and uniqueness results for BSDEs driven by centered Gaussian processes. Compared to the existing literature on Gaussian BSDEs, which mainly treats fractional Brownian motion with Hurst parameter H>1/2H>1/2, our main contributions are: (i) Our results cover a wide class of Gaussian processes as driving processes including fractional Brownian motion with arbitrary Hurst parameter H∈(0,1)H(0,1); (ii) the assumptions on the generator ff are mild and include e.g. the case when ff has (super-)quadratic growth in zz; (iii) the proofs are based on transferring the problem to an auxiliary BSDE driven by a Brownian motion.  相似文献   

5.
We introduce a broad class of self-similar processes {Z(t),t≥0}{Z(t),t0} called generalized Hermite processes. They have stationary increments, are defined on a Wiener chaos with Hurst index H∈(1/2,1)H(1/2,1), and include Hermite processes as a special case. They are defined through a homogeneous kernel gg, called the “generalized Hermite kernel”, which replaces the product of power functions in the definition of Hermite processes. The generalized Hermite kernels gg can also be used to generate long-range dependent stationary sequences forming a discrete chaos process {X(n)}{X(n)}. In addition, we consider a fractionally-filtered version Zβ(t)Zβ(t) of Z(t)Z(t), which allows H∈(0,1/2)H(0,1/2). Corresponding non-central limit theorems are established. We also give a multivariate limit theorem which mixes central and non-central limit theorems.  相似文献   

6.
This paper considers the short- and long-memory linear processes with GARCH (1,1) noises. The functional limit distributions of the partial sum and the sample autocovariances are derived when the tail index αα is in (0,2)(0,2), equal to 2, and in (2,∞)(2,), respectively. The partial sum weakly converges to a functional of αα-stable process when α<2α<2 and converges to a functional of Brownian motion when α≥2α2. When the process is of short-memory and α<4α<4, the autocovariances converge to functionals of α/2α/2-stable processes; and if α≥4α4, they converge to functionals of Brownian motions. In contrast, when the process is of long-memory, depending on αα and ββ (the parameter that characterizes the long-memory), the autocovariances converge to either (i) functionals of α/2α/2-stable processes; (ii) Rosenblatt processes (indexed by ββ, 1/2<β<3/41/2<β<3/4); or (iii) functionals of Brownian motions. The rates of convergence in these limits depend on both the tail index αα and whether or not the linear process is short- or long-memory. Our weak convergence is established on the space of càdlàg functions on [0,1][0,1] with either (i) the J1J1 or the M1M1 topology (Skorokhod, 1956); or (ii) the weaker form SS topology (Jakubowski, 1997). Some statistical applications are also discussed.  相似文献   

7.
We construct a sequence of processes that converges strongly to fractional Brownian motion uniformly on bounded intervals for any Hurst parameter HH, and we derive a rate of convergence, which becomes better when HH approaches 1/21/2. The construction is based on the Mandelbrot–van Ness stochastic integral representation of fractional Brownian motion and on a strong transport process approximation of Brownian motion. The objective of this method is to facilitate simulation.  相似文献   

8.
Let ηtηt be a Poisson point process of intensity t≥1t1 on some state space YY and let ff be a non-negative symmetric function on YkYk for some k≥1k1. Applying ff to all kk-tuples of distinct points of ηtηt generates a point process ξtξt on the positive real half-axis. The scaling limit of ξtξt as tt tends to infinity is shown to be a Poisson point process with explicitly known intensity measure. From this, a limit theorem for the mm-th smallest point of ξtξt is concluded. This is strengthened by providing a rate of convergence. The technical background includes Wiener–Itô chaos decompositions and the Malliavin calculus of variations on the Poisson space as well as the Chen–Stein method for Poisson approximation. The general result is accompanied by a number of examples from geometric probability and stochastic geometry, such as kk-flats, random polytopes, random geometric graphs and random simplices. They are obtained by combining the general limit theorem with tools from convex and integral geometry.  相似文献   

9.
It is known that in the critical case the conditional least squares estimator (CLSE) of the offspring mean of a discrete time branching process with immigration is not asymptotically normal. If the offspring variance tends to zero, it is normal with normalization factor n2/3n2/3. We study a situation of its asymptotic normality in the case of non-degenerate offspring distribution for the process with time-dependent immigration, whose mean and variance vary regularly with non-negative exponents αα and ββ, respectively. We prove that if β<1+2αβ<1+2α, the CLSE is asymptotically normal with two different normalization factors and if β>1+2αβ>1+2α, its limit distribution is not normal but can be expressed in terms of the distribution of certain functionals of the time-changed Wiener process. When β=1+2αβ=1+2α the limit distribution depends on the behavior of the slowly varying parts of the mean and variance.  相似文献   

10.
Let M=(Mt)t0M=(Mt)t0 be any continuous real-valued stochastic process. We prove that if there exists a sequence (an)n1(an)n1 of real numbers which converges to 0 and such that MM satisfies the reflection property at all levels anan and 2an2an with n≥1n1, then MM is an Ocone local martingale with respect to its natural filtration. We state the subsequent open question: is this result still true when the property only holds at levels anan? We prove that this question is equivalent to the fact that for Brownian motion, the σσ-field of the invariant events by all reflections at levels anan, n≥1n1 is trivial. We establish similar results for skip free ZZ-valued processes and use them for the proof in continuous time, via a discretization in space.  相似文献   

11.
Let x(s)x(s), s∈RdsRd be a Gaussian self-similar random process of index HH. We consider the problem of log-asymptotics for the probability pTpT that x(s)x(s), x(0)=0x(0)=0 does not exceed a fixed level in a star-shaped expanding domain T⋅ΔTΔ as T→∞T. We solve the problem of the existence of the limit, θ?lim(−logpT)/(logT)Dθ?lim(logpT)/(logT)D, T→∞T, for the fractional Brownian sheet x(s)x(s), s∈[0,T]2s[0,T]2 when D=2D=2, and we estimate θθ for the integrated fractional Brownian motion when D=1D=1.  相似文献   

12.
We derive a Molchan–Golosov-type integral transform which changes fractional Brownian motion of arbitrary Hurst index KK into fractional Brownian motion of index HH. Integration is carried out over [0,t][0,t], t>0t>0. The formula is derived in the time domain. Based on this transform, we construct a prelimit which converges in L2(P)L2(P)-sense to an analogous, already known Mandelbrot–Van Ness-type integral transform, where integration is over (−∞,t](,t], t>0t>0.  相似文献   

13.
We study models of discrete-time, symmetric, ZdZd-valued random walks in random environments, driven by a field of i.i.d. random nearest-neighbor conductances ωxy∈[0,1]ωxy[0,1], with polynomial tail near 0 with exponent γ>0γ>0. We first prove for all d≥5d5 that the return probability shows an anomalous decay (non-Gaussian) that approaches (up to sub-polynomial terms) a random constant times n−2n2 when we push the power γγ to zero. In contrast, we prove that the heat-kernel decay is as close as we want, in a logarithmic sense, to the standard decay n−d/2nd/2 for large values of the parameter γγ.  相似文献   

14.
15.
In the context of statistics for random processes, we prove a law of large numbers and a functional central limit theorem for multivariate Hawkes processes observed over a time interval [0,T][0,T] when T→∞T. We further exhibit the asymptotic behaviour of the covariation of the increments of the components of a multivariate Hawkes process, when the observations are imposed by a discrete scheme with mesh ΔΔ over [0,T][0,T] up to some further time shift ττ. The behaviour of this functional depends on the relative size of ΔΔ and ττ with respect to TT and enables to give a full account of the second-order structure. As an application, we develop our results in the context of financial statistics. We introduced in Bacry et al. (2013) [7] a microscopic stochastic model for the variations of a multivariate financial asset, based on Hawkes processes and that is confined to live on a tick grid. We derive and characterise the exact macroscopic diffusion limit of this model and show in particular its ability to reproduce the important empirical stylised fact such as the Epps effect and the lead–lag effect. Moreover, our approach enables to track these effects across scales in rigorous mathematical terms.  相似文献   

16.
Consider events of the form {Zs≥ζ(s),s∈S}{Zsζ(s),sS}, where ZZ is a continuous Gaussian process with stationary increments, ζζ is a function that belongs to the reproducing kernel Hilbert space RR of process ZZ, and S⊂RSR is compact. The main problem considered in this paper is identifying the function β∈RβR satisfying β(s)≥ζ(s)β(s)ζ(s) on SS and having minimal RR-norm. The smoothness (mean square differentiability) of ZZ turns out to have a crucial impact on the structure of the solution. As examples, we obtain the explicit solutions when ζ(s)=sζ(s)=s for s∈[0,1]s[0,1] and ZZ is either a fractional Brownian motion or an integrated Ornstein–Uhlenbeck process.  相似文献   

17.
An approximate martingale estimating function with an eigenfunction is proposed for an estimation problem about an unknown drift parameter for a one-dimensional diffusion process with small perturbed parameter εε from discrete time observations at nn regularly spaced time points k/nk/n, k=0,1,…,nk=0,1,,n. We show asymptotic efficiency of an MM-estimator derived from the approximate martingale estimating function as ε→0ε0 and n→∞n simultaneously.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号