首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three lanthanide “ate” complexes L2YbM(THF)n supported by amine bis(phenolate) ligand [L=Me2NCH2CH2N{CH2-(2-O-C6H2-But2-2,4)}2; M=Li, n=2 (1); M=Na, n=2 (2); M=K, n=3 (3)] were synthesized by the metathesis reactions of LM2 with anhydrous YbCl3 in 2:1 molar ratio in high yield. All the complexes were characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The influence of the alkali metal ions on the molecular structure of these lanthanide complexes has been elucidated.  相似文献   

2.
Six new lanthanide Schiff-base complexes were synthesized by reactions of hydrated lanthanide nitrates with H2L (H2L?=?N,N′-bis(salicylidene)-1,2-cyclohexanediamine) and characterized by elemental analysis, DTA–TG, IR, UV and luminescence spectra. The microanalyses and spectroscopic analyses indicate a 1D polymeric structure with the formula of [Ln(H2L)(NO3)3(MeOH)2] n [Ln?=?La (1), Ce (2), Pr (3), Sm (4), Gd (5) & Dy (6)]. The fluorescence spectrum of complex 4 exhibited Sm3+ centered, Schiff-base sensitized orange fluorescence, indicating that energy levels of the triplet state of H2L match closely to the lowest excited state (4G5/2) of Sm3+ ion.  相似文献   

3.
Syntheses for [(diphenylphosphinoyl)methyl]-4,5-dihydrooxazole (2) and [(diarylphosphinoyl)methyl]benzoxazoles [aryl = phenyl (3), tolyl (4), 2-trifluoromethylphenyl (5) and 3,5-bis(trifluoromethyl)phenyl (6)] have been developed. Each ligand has been characterized by spectroscopic methods and single crystal X-ray diffraction analyses have been completed for 2, 3, 4 and 5. The coordination chemistry of the ligands with Nd(NO3)3 and Yb(NO3)3 has been examined and structure determinations for [Nd(2)2(NO3)3(CH3OH)], [Nd(2)2(NO3)3], [Yb(3)2(NO3)3(H2O)]·0.5(CH3OH), [Nd(3)2(NO3)3]·3(CHCl3), [Nd(4)2(NO3)3(H2O)], [Yb(4)2(NO3)3(H2O)] and [Yb(5)2(NO3)3(H2O)]·0.5(CH3CN) are reported. Depending upon conditions, the ligands act as monodentate PO or bidentate, chelating PO,N donors.  相似文献   

4.
Adducts of lanthanide β-diketonates of the general formula LnL3(TPTZ) were synthesized and structurally characterized by single crystal X-ray diffraction [Ln = Eu3+, Tb3+, Er3+; L is the conjugate base of dibenzoylmethane (DBM), 1-benzoylacetone (BA), thenoyltrifluoroacetone (TTA), or 4,4,4-trifluoro-1-phenyl-1,3-butanedione (BTFA); TPTZ = 2,4,6-tri(2-pyridyl)-1,3,5-triazine, a rigid Lewis base with a large π system]. The lanthanide ion in each of these complexes is nonacoordinate with six β-diketonate oxygen atoms and three TPTZ nitrogen atoms, forming a coordination polyhedron best describable as a monocapped square antiprism. Characteristic red, green, and near infrared luminescence was observed for the Eu3+, Tb3+, and Er3+ complexes, respectively. All complexes showed significantly enhanced luminescence quantum yields when compared with the corresponding aqua analogues, with one of the Eu3+ complexes displaying a quantum yield of 69.7% in chloroform.  相似文献   

5.
合成了一种新颖三齿配体(L),N-(4-甲基苯)-N’-(2-(4-甲基苯氨基)乙基)乙烷-1,2-二胺,并制备了它的四种过渡金属配合物,结合元素分析、红外、1 HNMR和摩尔电导,确定配合物的组成为[ML(NO3)2](M=CuⅡ,CoⅡ,NiⅡ,ZnⅡ).用X-ray单晶衍射解析了Zn-L和Ni-L的单晶结构.通过紫外、荧光光谱研究了这四种金属配合物与小牛胸腺DNA的相互作用,根据结果推断出配合物与DNA的作用方式可能均为静电结合.Cu-L,Co-L,Ni-L,Zn-L与DNA的结合常数分别为:3.34×104,7.65×103,2.15×104,2.40× 104.  相似文献   

6.
Two aryl amide ligands, N-(p-tolyl)-2-(quinolin-8-yloxy)acetamide (L1 ) and N-(4-chlorophenyl)-2-(quinolin-8-yloxy)acetamide (L2 ), were synthesized. With these ligands, two series of lanthanide(III) complexes were prepared, Ln(L n )2(NO3)3 (n = 1, 2; Ln = La, Sm, Eu, Gd, Dy), and characterized by the elemental analyses, molar conductivity, 1H NMR spectra, IR spectra and TG-DTA. The fluorescence properties of the complexes and the triplet state energies of the ligands were studied in detail. In addition, the quantum yields of both Eu(III) complexes and Eu(L0)2(NO3)3 [where L0 is N-(phenyl)-2-(quinolin-8-yloxy)acetamide] 1 Wu, WN, Yuan, WB, Tang, N, Yang, RD, Yan, L and Xu, ZH. 2006. Spectrochim. Acta A, 65: 912[Crossref], [Web of Science ®] [Google Scholar] were calculated. The results indicate that among the lowest triplet energies (T) of the three ligands, that of L2 is most suitable to the resonance level (5D1) of Eu(III) ion. Furthermore, Eu(L2)2(NO3)3 has the highest fluorescence intensity and quantum yield of the three Eu(III) complexes.  相似文献   

7.
Mixed ligand complexes having the formulae Cu(RPO)2Py2, Cu(RPO)2Im2 and Cu(DBO)2Py2 [RPO = resacetophenone oxime, DBO = 2,4-dihydroxybenzophenone oxime, Py = pyridine and Im = imidazole] have been synthesized and characterized by UV–Vis, IR, ESR, cyclic voltammetry and magnetic susceptibility methods. Absorption studies revealed that each of these octahedral complexes is an avid binder of calf thymus DNA. The apparent binding constants for mixed ligand complexes are in order of 104–105 M−1. Based on the data obtained in the DNA binding studies a partial intercalative mode of binding is suggested for these complexes. The nucleolytic cleavage activity of the adducts was carried out on double stranded pBR322 circular plasmid DNA by using a gel electrophoresis experiment in the presence and absence of oxidant (H2O2). All the metal complexes cleaved supercoiled DNA by hydrolytic and oxidative paths. The oxidative path dominates the hydrolytic cleavage. The hydrolytic cleavage of DNA is evidenced from the control experiments showing discernable cleavage inhibition in the presence of the hydroxyl radical inhibitor DMSO or the singlet oxygen quencher azide ion.  相似文献   

8.
A series of metal complexes with a tripodal ligand, TMPzA, have been synthesized and characterized, and their single crystal structures have been determined by X-ray diffraction techniques. It has been found that when pyridyl derivatives as auxiliary ligands are added to the reaction mixture, the tripodal ligand TMPzA loses a pendant arm and coordinates with the metal centers to form the complexes: [Cu(DMPzA)(2,2′-bipy)]·(ClO4)2 (1), [(DMPzA)Cu(μ-4,4′-bipy)Cu(DMPzA)]·(ClO4)4 (2), [(TMPzA)Cu(μ-H2DPC)Cu(DMPzA)]·(ClO4)2 (3), [(DMPzA)Co(μ-H2DPC)Co(TMPzA)]·(ClO4)2 (4) [TMPzA = tris(3,5-bimethyl-pyrazolymethyl)amine; bipy = bipyridine; H2DPC = pyridyl-2,6-bicarboxylate; DMPzA = bis(3,5-bimethyl-pyrazolmethyl)amine]. In order to investigate the effect of the pyridyl ring on the cleavage of the pendant arm in the tripodal ligand, a fifth complex, [(TMPzA)Co(μ-HZPC)Co(TMPzA)·(H2O)2]·(ClO4)3 (5), has been prepared by using pyrazole-carboxylate (HZPC) instead of pyridyl derivatives, and its crystal structure has been determined. It has been found that the pendant arm in TMPzA ligand has not been removed in complex 5. The results show that the complexes with TMPzA have a strong ability to recognize pyridine compounds in methanol solvent, and they have potential application for molecular devices in the future. The cleavage mechanism has been studied by DFT calculations and ESI-MS spectra.  相似文献   

9.
The yttrium chloride with the bridged bis(amidinate) L (L = Me3SiNC(Ph)N(CH2)3NC(Ph)NSiMe3) LYCl(DME) (2) was synthesized and structurally characterized. Treatment of LLnCl(sol)x (Ln = Yb, sol = THF, x = 2 1; Ln = Y, sol = DME, x = 1 2) with the dilithium salt Li2L(THF)0.5 afforded the novel bimetallic lanthanide complexes supported by three ligands, Ln22-L)3 · DME (Ln = Yb 3, Y 4; DME = dimethylether), instead of the designed complex LLn(μ2-L)LnL via the ligand redistribution reaction. Complexes 3 and 4 were fully characterized including X-ray analysis and 1H NMR spectrum for 4. Reaction of LnCl3 (Ln = Yb, Y) with 2 equiv. of Li2L(THF)0.5 gave the anionic complexes [Li(DME)3][L2Ln] (Ln = Yb 5, Y 6), which were confirmed by a crystal structure determination. The further study indicated that complexes 3 and 4 can also be synthesized by reaction of LnCl3 (Ln = Yb, Y) with 1.5 equiv. of Li2L(THF)0.5 or reaction of 1 and 2 with anionic complexes 5 and 6. Complexes 3, 4, 5 and 6 were found to be high active catalysts for ring-opening polymerization of ε-caprolactone (CL).  相似文献   

10.
A novel Schiff base, namely Z ‐3‐((2‐((E )‐(2‐hydroxynaphthyl)methylene)amino)‐5‐nitrophenylimino)‐1,3‐dihydroindin‐2‐one, was synthesized from the condensation of 2‐hydroxy‐1‐naphthaldehyde and isatin with 4‐nitro‐o ‐phenylenediamine. It was structurally characterized on the basis of 1H NMR, 13C NMR and infrared spectra and elemental analyses. In addition, Ni(II) and Cu(II) complexes of the Schiff base ligand were prepared. The nature of bonding and the stereochemistry of the investigated complexes were elucidated using several techniques, including elemental analysis (C, H, N), Fourier transform infrared and electronic spectroscopies and molar conductivity. The thermal behaviours of the complexes were studied and kinetic–thermodynamic parameters were determined using the Coats–Redfern method. Density functional theory calculations at the B3LYP/6‐311G++ (d, p) level of theory were carried out to explain the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using LANL2DZ basis set. The total energy of highest occupied and lowest unoccupied molecular orbitals, Mullikan atomic charges, dipole moment and orientation are discussed. Moreover, the interaction of the metal complexes with calf thymus DNA (CT‐DNA) was explored using electronic spectra, viscosity measurements and gel electrophoresis. The experimental evidence indicated that the two complexes could strongly bind to CT‐DNA via an intercalation mechanism. The intrinsic binding constants of the investigated Ni(II) and Cu(II) complexes with CT‐DNA were 1.02 × 106 and 2.15 × 106 M−1, respectively, which are higher than that of the standard ethidium bromide. Furthermore, the bio‐efficacy of the ligand and its complexes was examined in vitro against the growth of bacteria and fungi to evaluate the antimicrobial potential. Based on the obtained results, the prepared complexes have promise for use as drugs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A series of metal complexes of cobalt(II), nickel(II), copper(II), and zinc(II) have been synthesized with newly-derived biologically active ligands. These ligands were synthesized by condensation of 3-substituted-4-amino-5-hydrazino-1,2,4-triazole and orthophthalaldehyde. The probable structure of the complexes has been proposed on the basis of elemental analyses and spectral (IR, 1H-NMR, UV-vis, magnetic, ESR, FAB-mass and thermal studies) data. Electrochemical study of the complexes is also made. All complexes are nonelectrolytes in N,N-dimethyl formamide and DMSO. The Schiff bases and their Co(II), Ni(II), Cu(II), and Zn(II) complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, and Pseudomonas aeruginosa) and antifungal (Aspergillus niger, Aspergillus flavus, and cladosporium) activities by minimum inhibitory concentration method. DNA cleavage is also carried out.  相似文献   

12.
Rare-earth complexes of the general formula [Ln(H2L1)2(NO3)3] [Ln = Gd (1), Ho (2) or Nd (3)] were prepared from an o-vanillin derived Schiff base ligand, 2-((E)-(1-hydroxy-2-methylpropan-2-ylimino)methyl)-6-methoxyphenol (H2L1). The single-crystal X-ray diffraction studies and SHAPE analyses of the Gd(III) and Ho(III) complexes show that the complexes are ten-coordinate and exhibit distorted tetradecahedron geometries. The phenolate oxygen-bridged dinuclear complex, [Ce2(H2L1)(ovan)3(NO3)3] (4, ovan = monodeprotonated o-vanillin), was obtained from the reaction of Ce(NO3)3?6H2O with H2L1. X-ray analysis revealed that hydrolysis of H2L1 occurred to yield o-vanillin, which bridged two cerium atoms with the Ce?Ce distance equal to 3.8232(6) Å. The Ce(III) ions are both ten-coordinate, but have different coordination environments, showing tetradecahedron and staggered dodecahedron geometries, respectively. With proton migration occurring from the phenol group to the imine function, complexation of the lanthanides to the ligand gives the Schiff base a zwitterionic phenoxo-iminium form.  相似文献   

13.
Complexes of cerium(III), lanthanum(III) and neodymium(III) with 3,5-pyrazoledicarboxylic acid (H3pdc) were synthesized and their compositions determined by elemental analysis. To identify the binding of Ce(III), La(III) and Nd(III) with H3pdc, detailed vibrational analysis was performed comparing experimental vibrational spectra of the ligand and its Ln(III) complexes with theoretically predicted and with literature data from related compounds. Significant differences in the IR and Raman spectra of the complexes were observed as compared to spectra of the ligand. The ligand and the complexes were tested for cytotoxic activities on the chronic myeloid leukemia derived K-562, overexpressing the BCR-ABL fusion protein and the non-Hodgkin lymphoma derived DOHH-2, characterized by an overexpression of the antiapoptotic protein bcl-2 cell lines. The results indicate that the tested compounds exerted considerable cytotoxic activity upon the evaluated cell lines in a concentration dependent manner; we constructed dose-response curves and calculated corresponding IC50 values. The lanthanide complexes exhibited potent cytotoxic activity, even more than cisplatin towards K-562 and DOHH-2 cell lines. In order to elucidate some of the mechanistic aspects of the observed cytotoxic effects, we evaluated whether the established cytotoxicity of the most active complex La(H2pdc) is related to its capacity to induce cell death through apoptosis.  相似文献   

14.
Abstract  The complexation of a tripodal amine-catechol ligand tris((2,3-dihydroxybenzylamino)ethyl)amine (TRENCAT, L) with group-13 metal ions, viz., Al(III), Ga(III), and In(III), were investigated by means of potentiometric titrations and spectrophotometric measurements in an aqueous medium of 0.1 M KCl at 25 ± 1 °C. The ligand shows the potential to form various monomeric complexes of the types MLH3, MLH2, MLH, and ML. At low pH, the ligand is coordinated through three more acidic ortho-catecholic O-atoms to give MLH3 species. With the rise in pH, the species MLH3 releases three protons in steps from the meta-catecholic O-atoms to form MLH2, MLH, and ML. The order of stability Ga(III) > Al(III) > In(III) for the species MLH3 and MLH2 is changed into Al(III) > Ga(III) > In(III) for the species MLH and ML. The coordination modes, binding ability, selectivity, and the change in stability order were explained with the help of experimental evidence, molecular modeling calculations, and available literature. Graphical Abstract     相似文献   

15.
Two monomeric cobalt(Ⅱ)complexes,[CoL(N3)] ClO4(1)and CoL(N3)2(2),where L is tris((3,5-dimethylpyrazol-1-yl)methyl)amine,were synthesized and their crystal structures were determined by X-ray diffraction technique.Complex 1 is five coordinated with one azide nitrogen atom and four nitrogen atoms of the tris((3,5-dimethylpyrazol-l-yl)-methyl)amine ligand,and the metal center is in distorted trigonal bipyramidal environment.Complex 2 is six coordinated distorted octahedron with the two azide nitrogen atoms and four nitrogen donors of the tris((3,5-dimethylpyrazol-1-yl)-methyl)amine ligand.The solution behaviors of the title complexes have been further investigated by UV-Vis,and 1H NMR analysis.It is found that the formation of 1 and 2 depends on the molar ratio of the azide ion to metal salt and ligand Complex 1 attached with one azide group is more stable and easy to generate than complex 2 incorporated with two azide groups,and the reasons were well discussed.  相似文献   

16.
17.
The complexes Ln(NO3)3(OPCy3)3(EtOH)x (Cy = cyclohexyl, C6H11x = 0 for Ln = Eu, Er, x = 0.5 for Ln = La, Nd and x = 1 for Ln = Tm, Yb) have been prepared by reaction of lanthanide nitrates with Cy3PO in ethanol. The single crystal X-ray structures for Ln = La, Nd, Eu, Er, Tm and Yb are reported. The structures for Ln = La–Eu have two molecules in the unit cell in which the nitrates are all bound as bidentate ligands. The unit cell for Ln = Er contains two distinct molecules; one with three bidentate nitrates and one with two bidentate and one monodentate nitrate. The Tm and Yb complexes have one molecule in the unit cell with two bidentate and one monodentate nitrate ligands. The monodentate nitrates are hydrogen bonded to ethanol in the Tm and Yb structures but not in the Er complex. The infrared spectra of the three classes of complex do not readily permit identification of the monodentate nitrate groups. Electrospray mass spectrometry indicates that redistribution/ionisation reactions occur in solution. Ions formed by solvolysis reactions are attributed to gas phase processes associated with the electrospray technique. Tandem mass spectrometry for the La, Ho and Yb complexes shows that in the gas phase loss of Cy3PO is the sole fragmentation pathway for all but the Yb complex where the higher energy required for initial fragmentation leads to a more complex fragmentation pattern.  相似文献   

18.
Tris(4-imidazolyl)carbinol, which has close coordination environment to the active site of metalloenzymes, has not been utilized as a biomimetic ligand because of its instability. We have synthesized stable tris(4-imidazolyl)carbinol derivatives having a methyl group as the NH protective group and a bulky substituent on the imidazole ring for stabilizing reactive species bound to the metal center. These ligands provide stable monomeric copper(I) complexes whose coordination environment are very close to the active site of metalloenzymes.  相似文献   

19.
Reaction of Cu(II) nitrate with a new pyrazole-based Schiff base ligand, 5-methyl-3-formylpyrazole-N-(2′-methylphenoxy)methyleneimine (MPzOA), afforded two types of Cu(II) complexes at different reaction temperatures, [Cu(MPzOA)(NO3)]2 (1) and [Cu(3,7,11,15-tetramethylporphyrin)(H2O)](NO3)2 (2), reported together with a Ni(II) complex, [Ni(MPzOA)2(H2O)2]Br2 (3). The compounds are characterized by single crystal X-ray structure analyses along with several physico-chemical and spectral parameters. Complex 1 is authenticated as a bis(μ-pyrazolato)dicopper(II), while 2 is a porphyrinogen and 3 is a distorted octahedral complex. Structural analyses of the complexes reveal that 1 crystallized in monoclinic P21/n space group while 2 and 3 crystallized in monoclinic C2/c space group. DNA-binding studies of the complexes have shown that the complexes interact with CT-DNA. DNA-cleavage studies with plasmid DNA have shown that 1 and 2 induce extensive DNA cleavage in the presence of H2O2 as an additive, whereas there is no change in degradation of super-coiled DNA by 3 in the presence of additive. The antimicrobial studies of the complexes against Escherichia coli DH5α bacteria strain indicated that all the complexes were capable of killing E. coli with different LD50 values.  相似文献   

20.
Five complexes have been synthesized by the reaction of lanthanide(III) nitrate with 2-thenoyltrifluoroacetone (HTTA) and p-hydroxybenzoic acid (L). The complexes have been characterized by elemental analysis, molar conductivity, FT-IR, UV-Vis, 1H NMR, TG-DTA, XPS, and transmission electron microscope. The general formula of the complexes is Na[Ln(TTA)3L] (Ln?=?La3+,?Ce3+,?Nd3+,?Eu3+,?Er3+). The antibacterial activities indicate that all five complexes exhibit antibacterial ability against Escherichia coli and Staphylococcus aureus with broad antimicrobial spectrums. The antitumor activity of the five complexes against K562 tumor cell in vitro is measured using methyl thiazolyl tetrazolium (MTT) colorimetry. The results show that the complexes induce K562 tumor cell apoptosis, and the complexes exhibit inhibitory effect on leukemia K562 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号