首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Utilizing the SCIEX ICP-MS an extensive study of the effects that plasma operating parameters have on analyte ion signals in ICP-MS has been carried out. Parameters studied included aerosol flow rate (nebulizer pressure), auxiliary flow rate, power and sampling depth (sampling position from the load coil). The two key parameters are aerosol flow rate (nebulizer pressure) and power. Elements can be grouped into characteristic behaviour patterns based on the overall dependence of their ion count signal on these two parameters. The nebulizer pressure-power behavior patterns allow a sensible selection of compromise operating conditions and significantly clarify single parameter observations which often indicate confusing trends in behavior. In addition to characterizing analyte ion signals the parameter behavior plots have also been used to study oxide species and plus two ions in ICP-MS. While aerosol flow rate and power appear to be the key ICP parameters in ICP-MS, ion signals are dependent on sampling depth and auxiliary flow rate and some data are also presented illustrating the signal dependence on these two parameters.  相似文献   

2.
The effects of adding N2 to the outer gas flow of an Ar plasma in inductively coupled plasma mass spectrometry (ICP-MS) are illustrated. With 5% N2 added to the outer gas flow and provided the central (nebulizer) gas flow is increased, modest signal enhancements (up to a factor of 4) are observed. The degree of enhancement depends on the extent to which an element forms a strong metal oxide bond and also, to some extent, on ionization potential. An important feature of N2 mixed gas plasmas for ICP-MS is that the signals for analyte oxide species (MO+) and certain background species (ArO+, ArOH+, Ar2+, ClO+, and ArCl+) are significantly reduced (an order of magnitude) by the addition of N2 to the outer gas flow. In addition to these observations, some results are also presented for O2 and air (outer gas) mixed gas plasmas and N2 (central gas) mixed gas plasmas.  相似文献   

3.
Laser-excited ionic fluorescence has been used to study the effects of sample matrix, operating conditions, and load coil shielding on analyte ion transport efficiency through the sampling orifice of an inductively coupled plasma mass spectrometer. Significant changes in ion transport efficiency result from changes in sample composition, RF forward power, nebulizer flow and torch shield configuration. The changes in ion transport efficiency correlate well with changes in the potential recorded on a single floating probe placed 1 mm upstream from the sampling orifice.  相似文献   

4.
Methanol and acetone were used to study effects of organic matrix on signal intensities of elements from 7Li to 238U and oxide yields in inductively coupled plasma-mass spectrometry (ICP-MS). Enhancement or suppression of analyte signals in the presence of methanol or acetone depends on the volatility and concentration of the compound and mass and ionization potential of elements concerned as well as ICP-MS operating conditions. Presence of a low concentration of methanol or acetone enhances the intensities of elements in order of decreasing mass. This is attributed to the spatial shift of the zone of maximum ion density, which, in turn, affects the extraction of ions from the plasma to the sampling cone. The possible effect of liquid methanol or acetone on nebulization and/or transport efficiency was avoided by using carry-over effect experiment. More volatile acetone more readily suppresses signals of all the elements under investigation. A higher concentration of methanol also suppresses intensities of the elements due to resultant cooling of the plasma. The enhancement effect of methanol and acetone appears to be more related to the amount of carbon present in the plasma than the difference between the functional groups of organic solvents. The oxide yield decreases in the presence of methanol, the magnitude of which depends on the nebulizer gas flow rate used. However, the reduced oxide yield is insufficient to account for the signal enhancement. Our results for 75As and 78Se agree with the C+-species–analyte atom charge transfer reaction hypothesis.  相似文献   

5.
A simple and very inexpensive in-situ nebulizer/hydride generator was used with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of As, Sb, Bi and Hg in water samples. The application of hydride generation ICP-MS alleviated the sensitivity problem of As, Sb, Bi and Hg determinations encountered when the conventional pneumatic nebulizer was used for sample introduction. The sample was introduced by flow injection to minimize the deposition of solids on the sampling orifice. The elements in the sample were reduced to the lower oxidation states with L-cysteine before being injected into the hydride generation system. This method has a detection limit of 0.003, 0.003, 0.017 and 0.17 ng ml−1 for As, Bi, Sb and Hg, respectively. This method was applied to determine As, Sb, Bi and Hg in a CASS-3 nearshore seawater reference sample, a SLRS-2 riverine water reference sample and a tap water collected from National Sun Yat-Sen University. The concentrations of the elements were determined by standard addition method. The precision was better than 20% for most of the determinations.  相似文献   

6.
Although inductively coupled plasma emission and mass spectrometry have been in widespread use for a long time, there is still a gap in our knowledge concerning how atoms are formed in the ICP, by which mechanisms they are excited, how ionization occurs, and how these factors are influenced by operating parameters of the ICP such as gas flow rates, radiofrequency power, and viewing or sampling position. Furthermore it is still not clear how or whether the sampling cone of the mass-spectrometer interface affects the ICP itself. Although many measurements have been made downstream from the sampling orifice, less is clear about the influence of the interface upstream of the sampling process. In our laboratory is available a suite of measurement tools and techniques that are being exploited to address these questions. These techniques permit us to map, on a spatially resolved basis, such critical features as electron-energy distributions, gas-kinetic temperatures, ground-state analyte atom and ion number densities, electron concentrations, and densities of excited-state argon species. In turn, these parameters can be measured in the presence and absence of suspected interferents and in the presence and absence of an ICP-MS sampling cone. Here, the basis of these measurements will be described. Also, based on recent results, mechanisms of excitation of analyte atoms and ions will be proposed and the influence of the ICP-MS sampling cone will be examined.  相似文献   

7.
Two key problem areas in inductively coupled plasma-mass spectrometry (ICP-MS) are spectral interferences from analyte and matrix based molecular ions, particularly oxide species; and non-spectroscopic matrix effects where an excess of an element, particularly heavier elements, suppresses the signal of lighter elements. It is shown that direct sample insertion (DSI) techniques can be used to eliminate some of these problems. With the absence of water in a DSI system, oxide species are reduced to a very low level ( .1%). Examples are shown for BaO+, CeO+ and ClO+. In addition, by relying on differential thermal volatilization, the suppressive matrix effect of U on Zn can be eliminated. Chemical modification with NaF is a key operational factor in achieving these benefits.  相似文献   

8.
The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles.In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best.An empirical equation is formulated for the estimation of the position of complete vaporization of a particle in the ICP. The equation takes into account the particle properties (diameter, density, boiling point, and molecular weight of the constituents of the particle) and the ICP operating parameters (ICP forward power and central channel gas flow rate). The proportional constant and exponents of the variables in the equation were solved using literature values of ICP operating conditions for single-particle inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) measurements of 6 kinds of particles in 12 studies. The calculated position is a useful guide for the selection of sampling depth or observation height for ICP-MS and ICP-AES measurements of single particles as well as discrete particles in a flow, such as laser-ablated materials and airborne particulates.  相似文献   

9.
The effects of varying the sampler-skimmer spacing in an inductively coupled plasma-mass spectrometer are illustrated. The signals for a number of species were monitored including background ions (ArN+, ArO+, ArOH+, Ar2+, Ar2H+), background continuum, analyte ions (Cu+, Ce+, La+), analyte oxide ions (CeO+, LaO+), and matrix induced ions (ArNa+). As the sampler-skimmer spacing is increased over that normally used, the signal for some species decreases in intensity while the signal for others increases in intensity. There is a wide range of differential behavior and in some cases the signal changes are quite dramatic.

In addition to presenting results for an Ar plasma, measurements are also presented for a N2-Ar mixed gas plasma. For some species, the signal changes observed when the sampler-skimmer spacing is increased are quite different with the N2-Ar mixed gas plasma than with the Ar plasma and are, in some cases, opposite to signal changes observed with the Ar plasma. It appears that a larger sampler-skimmer spacing is more appropriate for a N2 mixed gas plasma than the spacing normally used for a pure Ar plasma. Finally the effect of sampler-skimmer spacing on matrix effects is presented and it appears that matrix effects are not induced in the zone between the sampler and the skimmer.  相似文献   


10.
Planar laser-induced fluorescence was used to examine the effect of the sampling cone on analyte atom and ion distributions in the inductively coupled plasma used as an ion source for elemental mass spectrometry. Comparisons of planar laser-induced fluorescence images in the presence and absence of the sampling interface reveal that the insertion of the sampling cone into the plasma dramatically lowers singly-charged ion densities in the 1–2 mm region immediately upstream from the sampling cone, but increases densities in the region between 2 mm and 10 mm upstream from the sampling cone. Some of the drops in densities near the sampling cone can be attributed to acceleration of the plasma through the pumped sampling orifice. A shift in equilibrium between doubly and singly charged barium ions caused by cooling of the plasma is proposed to account for the increases in densities of Ba+ in the upstream region.  相似文献   

11.
Planar laser-induced fluorescence was used to map density distributions of ground state barium atoms, ground state barium ions, and excited-state barium ions in the region between the load coil and the sampling cone of an inductively coupled plasma mass spectrometer. The effects of power, nebulizer gas flow rate, and the addition of lithium to the sample on the distributions were studied. The maps reveal that the radial distributions of atomic species across the diameter of the plasma are compressed as the plasma is drawn into the sampling orifice, and that as a result of that compression, the distribution of ions across the 1-mm diameter of the sampling orifice is non-uniform. The distribution changes as conditions in the plasma change. The skimmer cone that separates the first and second stages of the differentially-pumped vacuum interface transmits ions exclusively from the center of the distribution that exists at the sampling cone. As a result, the overall efficiency with which ions are transmitted through the vacuum interface varies as conditions in the plasma change.  相似文献   

12.
The net analyte signal (NAS)-based method HLA/GO, modification of the original hybrid linear analysis (HLA) method, has been used to determine carbendazim, fuberidazole and thiabendazole in water samples. This approach was used after a solid-phase extraction (SPE) step, using the native fluorescence emission spectra of real samples, previously standardized by piecewise direct standardization (PDS). The results obtained show that the modification of HLA performs in a similar way that partial least-squares method (PLS-1). The NAS concept was also used to calculate multivariate analytical figures of merit such as limit of detection, selectivity, sensitivity and analytical sensitivity (γ−1). With this purpose, blanks of methanol and ternary mixtures, with the target analyte at low concentration and the other two ranging according to the calibration matrix, were used, with different results. Detection limits calculated in the last way are more realistic and show the influence of the other components in the sample. Selectivity for carbendazim is higher than the corresponding values for fuberidazole and thiabendazole, whereas sensitivity, as well as the values obtained for their detection limits, are lower for carbendazim, followed by thiabendazole and fuberidazole. Results obtained by modification of HLA vary in the same way that the ones obtained by PLS-1.  相似文献   

13.
毛细管电泳-电感耦合等离子质谱联用的接口设计   总被引:1,自引:0,他引:1  
描述了毛细管电泳电感耦合等离子体质谱(CE-ICP-MS)联用技术的单T型接口,自行设计了双T型接口,并对两接口的分析性能作了比较。解决了接口中的常见问题,使用节流阀减小自吸作用并降低了CE分离物的稀释倍数,排气阀使提升量保持稳定。经考察得知,采用自吸作用提升液流流量稳定,其重现性RSD小于5%;双T型接口较单T型接口对CE分离更有利。采用双T型接口联用时,CE分离La、Ce、Nd混合离子迁移时间RSD小于2%,MS信号RSD小于15%,且不同浓度样品经CE分离后其MS信号基本呈线性关系。  相似文献   

14.
Water soluble tertiary amines enhance signals and decrease polyatomic chloride interferences in the direct inductively coupled plasma – mass spectrometric (ICP-MS) determination of As and Se in biological samples. Preliminary experiments with amine concentrations and nebulizer flow rates produced element and interference signal intensity changes. Arsenic and Se ICP-MS determination parameters have been optimized by a simplex procedure with amines in an argon plasma or without amines but with addition of N2 to the Ar. Variables include RF (radio frequency) power, nebulizer gas flow rate, intermediate gas flow rate, and amine concentration or nitrogen gas flow rate. Detection limit, minimization of polyatomic ion intensities, and reproducibility have been evaluated as reponse factors. The signal enhancement and element-to-molecular interference ratios differ to some extent with analyte intensity optimum operating conditions. The detection limits with addition of nitrogen (16 pg mL–1 for As and 180 pg mL–1 for Se) or of amines (8 pg mL–1 for As and 120 pg mL–1 for Se) and the extent of chloride interference minimization were compared. Amines addition was more beneficial. Biological standard reference materials and food and fecal samples were analyzed following different sample dissolution procedures.  相似文献   

15.
A method was presented for the determination by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) of Impurity Cerium in Potassium Lithium Niobate (K3Li2Nb5O15) Crystal. A standard model Perkin-Elmer/SCIEX ELAN 5000 ICP Mass Spectrometer was used. The instrument was operated at a RF power setting of 1.05 kW. A standard demountable quartz torch with 1.2mm id alumina injector tube was used with the following argon gas flow rates:nebulizer 0.84L/min,auxiliary 0.80L/min,and coolant 15.0L/min.  相似文献   

16.
Water soluble tertiary amines enhance signals and decrease polyatomic chloride interferences in the direct inductively coupled plasma – mass spectrometric (ICP-MS) determination of As and Se in biological samples. Preliminary experiments with amine concentrations and nebulizer flow rates produced element and interference signal intensity changes. Arsenic and Se ICP-MS determination parameters have been optimized by a simplex procedure with amines in an argon plasma or without amines but with addition of N2 to the Ar. Variables include RF (radio frequency) power, nebulizer gas flow rate, intermediate gas flow rate, and amine concentration or nitrogen gas flow rate. Detection limit, minimization of polyatomic ion intensities, and reproducibility have been evaluated as reponse factors. The signal enhancement and element-to-molecular interference ratios differ to some extent with analyte intensity optimum operating conditions. The detection limits with addition of nitrogen (16 pg mL–1 for As and 180 pg mL–1 for Se) or of amines (8 pg mL–1 for As and 120 pg mL–1 for Se) and the extent of chloride interference minimization were compared. Amines addition was more beneficial. Biological standard reference materials and food and fecal samples were analyzed following different sample dissolution procedures.  相似文献   

17.
A flow injection wetting-film extraction system without segmentor and phase separator has been coupled to flame atomic absorption spectrometry for the determination of trace copper. Isobutyl methyl ketone (MIBK) was selected as coating solvent and 8-hydroxyquinoline (oxine) as the chelating reagent. By switching of a 8-channel valve and alternative initiation of two peristaltic pumps, MIBK, sample solution containing copper chelate of oxine, and air-segment sandwiched eluting solution (1.0 mol l−1 nitric acid) were sequentially aspirated into an extraction coil made of PTFE tubing of 360 cm length and 0.5 mm i.d. The formation of organic film in the wall of the extraction coil, extraction of the copper chelate into the organic film and back-extraction of the analyte into the eluting solution occurred consecutively when these zones aspirated into the extraction coil were propelled down the extraction coil by a carrier solution at a flow rate of 2 ml min−1. After leaving the extraction coil, the concentrated zone was transported to the nebulizer at its free uptake rate for atomization. Under the optimized conditions, an enrichment factor of 43 and a detection limit of 0.2 μg l−1 copper were achieved at a sample throughput rate of 30 h−1. Eleven determinations of a standard copper solution of 60 μg l−1 gave a relative standard deviation of 1.5%. Foreign ions possibly present in tap water and natural water did not interfere with the copper determination. The developed method has been successfully used to the determination of copper content of tap water and river water.  相似文献   

18.
A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 μl/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography (μHPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5′ deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and μHPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 μl/min.  相似文献   

19.
S C Shum  R Neddersen  R S Houk 《The Analyst》1992,117(3):577-582
A new version of the direct injection nebulizer (DIN) is used to interface liquid chromatographic (LC) separations with element-selective detection using inductively coupled plasma mass spectrometry (ICP-MS). The DIN injects all of the sample into the ICP and has a dead volume of less than 1 microliter. Charged species of arsenic and tin are separated as ion pairs on a micro-scale (1 mm i.d.), packed, reversed-phase column. Detection limits are 0.2-0.6 pg for arsenic and 8-10 pg for tin. For methanol + water eluents, the signal is highest at 25% methanol and stays within 25% of this maximum as the methanol fraction is varied from 20 to 80%. Compared with LC-ICP-MS with conventional nebulizers, the absolute detection limits and chromatographic resolution are substantially superior, and the dependence of analyte signal on solvent composition is somewhat less severe with the DIN.  相似文献   

20.
Cheng H  Yin X  Xu Z  Wang X  Shen H 《Talanta》2011,85(1):794-799
A simple and demountable capillary microflow nebulizer (d-CMN) was developed for inductively coupled plasma mass spectrometry (ICP-MS). It consisted of a nebulizer body, a fused-silica capillary with a tapered tip and a polytetrafluoroethylene (PTFE) adapter. The gas orifice i.d., the solution capillary tip i.d. and its wall thickness were 200, 30, and 5 μm, respectively. The sensitivities, detection limits, precisions and the long-term stability with the d-CMN were evaluated. The experimental results indicated that its performances at low uptake rates were similar or better than those obtained with the conventional concentric nebulizer at 820 μL/min and the micromist nebulizer at 200 μL/min. The demountable construction of the d-CMN permitted that the blocked or broken solution capillary could be conveniently renewed. The low self-aspiration rate (4.77 μL/min) and the analytical characteristics comparable to commercial microflow nebulizers made the d-CMN a good choice for coupling capillary electrophoresis and microbore high-performance liquid chromatograph to ICP-MS. The proposed d-CMN was successfully applied in the iodine speciation by coupling microchip capillary electrophoresis (MCE) to ICP-MS. The absolute detection limits for iodide and iodate of 0.20 and 0.29 fg were achieved with satisfactory resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号