首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonlinear vibration of circular corrugated plates   总被引:3,自引:2,他引:3  
In this paper, first by using Hamilton principle, we derive the variational equation of circular corrugated plates. Taking the central maximum amplitude of circular corrugated plates as the perturbation parameter and adopting the perturbation variational method, in the first-order approximation, we obtain the natural frequency of linear vibration of circular corrugated plates and then the nonlinear natural frequency of the corrugated plates. By comparing with the linear results, the attempt of this paper is proved feasible.This paper was presented in the 2nd National Conference on Vibration (Xi'An 1984)  相似文献   

2.
Chebyshev polynomials are used to solve the problem of large deflection for corrugated circular plates with a plane central region under arbitrary loads based on the nonlinear bending theory of anisotropic circular plates. Numerical results are compared with those available in the literature. The present method shows higher accuracies and larger application ranges.  相似文献   

3.
A detailed numerical study is carried out to investigate fluid flow and heat transfer characteristics in a channel with heated V corrugated upper and lower plates. The parameters studied include the Reynolds number (Re = 2,000–5,500), angles of V corrugated plates (θ = 20°, 40°, 60°), and constant heat fluxs (q″ = 580, 830, 1,090 W/m2). Numerical results have been validated using the experimented data reported by Naphon, and a good agreement has been found. The angles of V corrugated plates (θ) and the Reynolds number are demonstrated to significantly affect the fluid flow and the heat transfer rate. Increasing the angles of V corrugated plates can make the heat transfer performance become better. The increasing Reynolds number leads to a more complex fluid flow and heat transfer rate. The numerical calculations with a non-equilibrium wall function have a better accuracy than with a standard wall function for solving high Reynolds numbers or complex flow problems.  相似文献   

4.
Vibration problems of flexible circular plates with initial deflection   总被引:2,自引:0,他引:2  
In this paper,the differential equations of flexible circular plates with initialdeflection are derived.The stability of motion is investigated in phase plane.Theperiodical solutions of nonlinear vibration for circular plates with initial deflection areobtained by use of Galerkin method and Lindstedt-Poincare perturbation method.Theeffect of initial deflection on the dynamic behavior of the flexible plates are alsodiscussed.  相似文献   

5.
本文以正交异性板理论为基础,提出了一种波纹环形板非线性弯曲的Cheby-shev级数解法,推导出具有硬中心的波纹环形板在任意轴对称载荷作用下的弹性特征方程.文中计算了几个典型的算例,数值结果表明本文的方法对目前文献中常见的方法有一定的改进和推广.  相似文献   

6.
This paper solves the problem of large deflections for corrugated circular plates with a plane central region under the action of concentrated loads at the center by means of the non-linear bending theory for anisotropic circular plates. Using the modified iteration method, the characteristic relation of the plate is obtained. This formula may be applied directly to design of elastic elements of measuring instruments.  相似文献   

7.
Experiments have been carried out on a pair of circular cylinders to investigate the effectiveness of pivoting parallel plates as wake-induced vibration suppressors. Measurements of amplitude of vibration and average drag are presented for a circular cylinder, free to respond in the cross-flow direction, with mass ratio 2 and a damping level of 0.7% of critical damping. Reduced velocities were up to nearly 30, with associated Reynolds numbers up to 2.3×104 and the results presented are for a centre-to-centre separation of cylinders of 4 diameters. It is shown how vortex-induced vibration and wake-induced vibration of the downstream cylinder of a tandem pair can be practically eliminated by using free to rotate parallel plates. The device achieves vibration suppression with a substantial drag reduction when compared to a pair of fixed tandem cylinders at the same Reynolds number. Results for a single splitter plate and helical strakes are also presented for comparison and were found not to be effective in suppressing wake-induced vibration.  相似文献   

8.
The validity and the range of applicability of the classical plate theory (CPT) and the first-order shear deformation plate theory, also called Mindlin plate theory (MPT), in comparison with three-dimensional (3-D) p-Ritz solution are presented for freely vibrating circular plates on the elastic foundation with different boundary conditions. In order to achieve this purpose, a study of the 3-D elasticity solution is carried out to determine the free vibration frequencies of clamped, simply supported and free circular plates resting on an elastic foundation. The Pasternak model with adding a shear layer to the Winkler model is used for describing the elastic foundation. In addition to being employed the p-Ritz algorithm, the analysis is based on the linear, small strain and 3-D elasticity theory. In this analysis method, a set of orthogonal polynomial series in a cylindrical polar coordinate system is used to arrive eigenvalue equation yielding the natural frequencies for the circular plates. The accuracy of these results is verified by appropriate convergence studies and checked with the available literature and the MPT. Furthermore, the effect of the foundation stiffness parameters, thickness-radius ratio, and different boundary conditions on the ill-conditioning of the mass matrix as well as on the vibration behavior of the circular plates is investigated. Afterwards, the validity and the range of applicability of the results obtained on the basis of the CPT and MPT for a thin and moderately thick circular plate with different values of the foundation stiffness parameters are graphically presented through comparing them with those obtained by the present 3-D p-Ritz solution. Finally, the phenomenon of mode shape switching is investigated in graphical forms for a wide range of the Winkler foundation stiffness parameters.  相似文献   

9.
Chai  Yuyang  Li  Fengming  Song  Zhiguang  Zhang  Chuanzeng 《Nonlinear dynamics》2020,102(4):2179-2203

This paper is devoted to investigate the nonlinear vibration characteristics and active control of composite lattice sandwich plates using piezoelectric actuator and sensor. Three types of the sandwich plates with pyramidal, tetrahedral and Kagome cores are considered. In the structural modeling, the von Kármán large deflection theory is applied to establish the strain–displacement relations. The nonlinear equations of motion of the structures are derived by Hamilton’s principle with the assumed mode method. The nonlinear free and forced vibration responses of the lattice sandwich plates are calculated. The velocity feedback control (VFC) and H control methods are applied to design the controller. The nonlinear vibration responses of the sandwich plates with pyramidal, tetrahedral and Kagome cores are compared. The influences of the ply angle of the laminated face sheets, the thicknesses of the lattice core and face sheets and the excitation amplitude on the nonlinear vibration behaviors of the sandwich plates are investigated. The correctness of the H control algorithm is verified by comparing with the experiment results reported in the literature. The controlled nonlinear vibration response of the sandwich plate is computed and compared with that of the uncontrolled structural system. Numerical results indicate that the VFC and H control methods can effectively suppress the large amplitude vibration of the composite lattice sandwich plates.

  相似文献   

10.
This paper is analytically concerned with the large amplitude vibration of thick orthotropic circular plates incorporating the effects of transverse shear and rotatory inertia. Von Kármán-type field equations written in terms of the three displacement components of the plate are utilized to obtain solutions to clamped stress-free and immovable plates. By means of Galerkin's technique and a numerical Runge-Kutta procedure a multiple-mode analysis is carried out in both cases. Exact solutions are reported for two of the three governing equations. Effects of transverse shear deformation and modal interaction are found to be significant for orthotropic thick plates. The method given here could be extended to the multiple-mode analysis of circular plates with other boundary conditions.  相似文献   

11.
基于经典板理论,研究了功能梯度材料圆板的轴对称弯曲、屈曲和自由振动解与相应的均匀材料圆板解之间的转换关系.通过消去拉-弯耦合项得到了以挠度函数表示的功能梯度圆板的弯曲、屈曲和自由振动控制方程.分析功能梯度圆板与均匀圆板的控制方程之间的相似性,得到了功能梯度材料圆板与均匀圆板的解之间解的相似转换关系,在假定FGM圆板的材料性质沿厚分别以幂函数和指数函数的度变规律后,给出了相应的转换系数的解析表达式.该系数集中反映了功能梯度圆板的材料非均匀性.在已知均匀材料圆板轴对称解的条件下,可将功能梯度材料圆板轴对称问题的求解转化为相似转换系数的计算问题.这一方法可为非均匀板的求解提供了十分便捷有效的途径,而且便于工程应用.  相似文献   

12.
将富里叶-贝塞尔级数引入积分方程[1],推导出一种研究含振子及弹性支承圆板振动特性的新方法,根据积分方程和富里叶-贝塞尔级数理论,首先用第一类贝塞尔函数构造圆板的格林函数,然后由叠加原理将圆板的自由振动问题转化为积分方程的特征值问题;进面将积分方程形式的特征值问题转化为无穷阶矩阵的标准特征值问题,计算时根据精度的要求,截取无穷阶矩阵的标准特征值为有限阶矩阵的标准特征值问题,采用Q-R算法,计算实践表明,本方法不仅具有运算简捷,精度高,适用性强的特点,而且能从整体上对系统的动态性加以研究,从而为这类系统的优化设计提供有;力的 工具。  相似文献   

13.
Orthotropic circular annular plates have a lot of applications in engineering such as space structures and rotary machines. In this paper, frequency equations for the in-plane vibration of the orthotropic circular annular plate for general boundary conditions were derived. To obtain the frequency equation, first the equation of motion for the circular annular plate in the cylindrical coordinate is derived by using the stress-strain- displacement expressions. Helmholtz decomposition is used to uncouple the equations of motion. The wave equation is obtained by assumption a harmonic solution for the uncoupled equations. Using the separation of the variables leads to the general wave equation solution and the in-plane displacements in the r and θ directions. Finally, boundary conditions are exerted and the natural frequency is derived for general boundary conditions. The obtained results are validated by comparing with the previously reported and those from finite element analysis.  相似文献   

14.
The free vibration of annular thick plates with linearly varying thickness along the radial direction is studied, based on the linear, small strain, three-dimensional (3-D) elasticity theory. Various boundary conditions, symmetrically and asymmetrically linear variations of upper and lower surfaces are considered in the analysis. The well-known Ritz method is used to derive the eigen-value equation. The trigonometric functions in the circumferential direction, the Chebyshev polynomials in the thickness direction, and the Chebyshev polynomials multiplied by the boundary functions in the radial direction are chosen as the trial functions. The present analysis includes full vibration modes, e.g., flexural, thickness-shear, extensive, and torsional. The first eight frequency parameters accurate to at least four significant figures for five vibration categories are obtained. Comparisons of present results for plates having symmetrically linearly varying thickness are made with others based on 2-D classical thin plate theory, 2-D moderate thickness plate theory, and 3-D elasticity theory. The first 35 natural frequencies for plates with asymmetrically linearly varying thickness are compared to the finite element solutions; excellent agreement has been achieved. The asymmetry effect of upper and lower surface variations on the frequency parameters of annular plates is discussed in detail. The first four modes of axisymmetric vibration for completely free circular plates with symmetrically and asymmetrically linearly varying thickness are plotted. The present results for 3-D vibration of annular plates with linearly varying thickness can be taken as benchmark data for validating results from various plate theories and numerical methods.  相似文献   

15.
By means of modified iteration method, this paper gives approximate solution of the large deflection equations of circular corrugated plate with sine-shaped shallow waves having a central platform under uniform lateral load. A formula of initial modification coefficient is given, and an integral is obtained for the simplification of modified iteration calculations. The results of present paper show better agreement with experimental data and larger applicable range than all other existing solutions of corrugated plates.  相似文献   

16.
A three-dimensional free vibration analysis of circular and annular plates is presented via the Chebyshev–Ritz method. The solution procedure is based on the linear, small strain, three-dimensional elasticity theory. Selecting Chebyshev polynomials which can be expressed in terms of cosine functions as the admissible functions, a convenient governing eigenvalue equation can be derived through the Ritz method. According to the geometric properties of circular and annular plates, the vibration is divided into three distinct categories: axisymmetric vibration, torsional vibration and circumferential vibration. Each vibration category can be further subdivided into the antisymmetric and symmetric ones in the thickness direction. Convergence and comparison study demonstrated the high accuracy and efficiency of the present method. The present approach shows a distinct advantage over some other Ritz solutions in that stable numerical operation can be guaranteed even when a large number of admissible functions is employed. Therefore, not only lower-order but also higher-order eigenfrequencies can be obtained by using sufficient terms of the Chebyshev polynomials. Finally, some valuable results for annular plates with one or both edges clamped are given and discussed in detail.  相似文献   

17.
In this paper, fundamental equations of the axisymmetric large amplitude free vibration for circular sandwich plates are derived by means of Hamilton principle. In most cases, the sandwich plates are composed of very thin faces, then the preceding fundamental equations are simplified considerably. For an illustrative example, a circular sandwich plate with edge clamped but free to slip is considered, and then we got a pure analytic solution of the axisymmetric large amplitude free vibration with the aid of the modified iteration method, and derived an analytic relation for the amplitude-frequency response.  相似文献   

18.
An experimental analysis about the flow patterns that appear in the channel formed between two corrugated plates with an egg carton configuration is reported. The types of flow instabilities caused by the corrugated plates are identified and described by means of flow visualization experiments, and photographic sequences illustrate the flow features present for each case. The influence on flow instabilities of Reynolds number, phase angle, convergence/divergence angle and spacing between corrugated plates is investigated. The corrugated plates are set divergent and convergent in order to investigate if recirculations are broken by chaotic advection. The improvement of heat transfer in the laminar regime has become an essential task in many applications and therefore the experiments are conducted in this regime.The corrugated plates geometry provides two main advantages over the conventional plane plates: the recirculation zones observed in the longitudinal direction and the three-dimensionality of the flow, i.e. the recirculations reduce the thermal resistances while the three-dimensionality of flow generates a better mixing and a more uniform temperature distribution.This experimental study contributes to the general knowledge on the subject being the first that addresses the analysis of convergent and divergent egg carton plates. It is expected that the results presented here will shed some light as to advantageously use these geometries in the near-future heat exchangers. (Because of the improve chaotic mixing in divergent corrugated plates, this configuration may be a good option to improve heat exchangers performance, because a better mixing is always related to the presence of core fluid near exchange surfaces, and consequently an increase in temperature gradients and heat transfer.)  相似文献   

19.
Nonlinear vibration of circular sandwich plate under the uniformed load   总被引:3,自引:1,他引:2  
IntroductionSofar,onlyafewpeoplehavestudiedthelargedeflectionproblemsofsandwichplatesandshellsbecauseofthedifficultyofnonlinearmathematics.LiuRenhuaihasdonemuchtofindaseriesofresultswiththevalueofapplicationinengineeringpractice[1~5].Author[6,7]hadtheiniti…  相似文献   

20.
Static and free vibration analyses of plates with circular holes are performed based on the three-dimensional theory of elasticity. The plates are made of a functionally graded material (FGM), and the volume fractions of the constituent materials vary continuously across the plate. The effective properties of the FGM plate are estimated by using the Mori–Tanaka homogenization method. A graded finite element method based on the Rayleigh–Ritz energy formulation is used to solve the problem. Effects of different volume fractions of the materials and hole sizes on the behavior of FGM plates under uniaxial tension are investigated. Natural frequencies of a fully clamped FGM plate with a circular cutout are derived. The results obtained are compared with available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号