首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different methods to create chemically patterned, flat PDMS stamps with two different chemical functionalities were compared. The best method for making such stamps, functionalized with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFDTS) and 3-(aminopropyl)triethoxysilane (APTS), appeared to be full functionalization of a freshly oxidized flat PDMS stamp with either adsorbate, followed by renewed oxidation through a mask and attachment of the other adsorbate. These stamps were used to transfer polar inks (a thioether-functionalized dendrimer and a fluorescent dye) by microcontact printing. The PFDTS monolayer was used as a barrier against ink transfer, while the APTS SAM areas functioned as an ink reservoir for polar inks. The printing results confirmed the excellent transfer of hydrophilic inks with these stamps to gold and glass substrates, even from aqueous solutions. Attachment of a fluorescent dye on the amino-functionalized regions shows the possibility of the further modification of the chemically patterned stamps for tailoring of the stamps' properties.  相似文献   

2.
A moderately hydrophilic, thermoplastic elastomer (poly(ether-ester)) was investigated as a stamp material for microcontact printing of a polar ink: pentaerythritol-tetrakis-(3-mercaptopropionate). Stamps with a relief structure were produced from this polymer by hot embossing, and a comparison was made with conventional poly(dimethylsiloxane) (PDMS) and oxygen-plasma-treated PDMS. It is shown that the hydrophilic stamps can be used for the repetitive printing (without re-inking) of at least 10 consecutive patterns, which preserve their etch resistance, and this in rather sharp contrast to conventional and oxygen plasma-treated PDMS stamps. It is argued that these enhanced printing characteristics of the hydrophilic stamps originate from an improved wetting and solubility of polar inks in the hydrophilic stamp.  相似文献   

3.
Locally oxidized patterns on flat poly(dimethylsiloxane) stamps for microcontact printing were used as a platform for the transfer of a hydrophilic fluorescent ink to a glass substrate. The contrast was found to be limited. These locally oxidized patterns were conversely used as barriers for the transfer of hydrophobic n-octadecanethiol. In this case a good contrast was obtained, but the pattern was found to be susceptible to defects (cracks) in the barrier layer. Local stamp surface oxidation and subsequent modification with 1H,1H,2H,2H-perfluorodecyltrichlorosilane, for use as a barrier in the transfer of n-octadecanethiol, 16-mercaptohexadecanoic acid, and octanethiol, resulted in remarkably good contrast and stable patterns. The improved ink transfer control is ascribed to the reduction of undesired surface spreading and a superior mechanical stability of the stamp pattern. This new approach substantially expands the applicability of microcontact printing and provides a tool for the faithful reproduction of even extremely low filling ratio patterns.  相似文献   

4.
Poly(propylene imine) dendrimers with dialkyl sulfide end groups were prepared and developed as inks for positive microcontact printing ((+)muCP) on gold. Long (C10H21-S-C10H20-), medium (C3H7-S-C4H8-), and short (CH3-S-CH2-) dialkyl sulfide end groups were attached to second- and third-generation PPI dendrimers to create a family of dendritic sulfides. The dendritic inks flatten upon adsorption and form monolayers on gold. (+)muCP was performed on gold using commercially available poly(dimethylsiloxane) as stamp material and n-octadecanethiol as etch resist. The gold beneath the dendrimers was selectively etched away with an acidic Fe(NO3)3/thiourea solution to give the positive copy of the original master pattern. The multivalent sulfide attachment and the relatively high molecular mass of these dendrimers ensured minimal lateral ink spreading and thus optimal feature reproducibility. Contact times were varied to analyze the spreading rates of the dendritic inks. The spreading rates of the dendritic inks were found to be much lower than that of pentaerythritol tetrakis(3-mercaptopropionate). (+)muCP with the new inks was extended to submicrometer features. Optical microscopy, scanning electron microscopy, and atomic force microscopy were used to characterize the etched samples. Lines with a width of 100 nm were faithfully replicated with the third-generation dendrimers bearing medium (C3-S-C4-) end groups.  相似文献   

5.
In this work we explore a new hydrogel stamp material obtained from polymerizing 2-hydroxyethyl acrylate and poly(ethylene glycol) diacrylate in the presence of water for the microcontact printing of proteins directly on gold substrates and by covalent coupling to self-assembled monolayers of alkanethiols. At high cross-link density, the hydrogel is rigid, hydrophilic, and with a high buffer holding capacity to enable the unsupported printing of protein patterns homogeneously and reproducibly, with micrometer-range precision. The stamps were used to print antibodies to human parathyroid hormone, which were shown using immunoassay tests to retain their biological function with binding capacities comparable to those of solution-adsorbed antibodies.  相似文献   

6.
A technique for microcontact printing of thiols in liquid media is presented. Elastomeric poly(dimethyl siloxane) stamps are used to pattern gold surfaces with thiol-based self-assembled monolayers. The liquid (water in this case) has been used as an incompressible support and, advantageously, also acts as a medium in which alkylthiol ink molecules are poorly miscible. Consequently, we have been able to produce patterned thiol monolayers using stamps with aspect ratios unsuitable for conventional microcontact printing (i.e., 15:1) and present evidence to suggest that it is possible to use stamps with aspect ratios of up to 100:1.  相似文献   

7.
We report a new patterning method, called light-stamping lithography (LSL), that uses UV-induced adhesion of poly(dimethylsiloxane) (PDMS). LSL is based on the direct transfer of the contact surface of the PDMS stamp to a substrate via a UV (254 nm)-induced surface bonding between the stamp and the substrate. This procedure can be adopted in automated printing machines that generate patterns with a wide range of feature sizes on diverse substrates. To demonstrate its usefulness, the LSL method was applied to prepare several PDMS patterns on a variety of substrates. The PDMS patterns were then used as templates for selective deposition of TiO2 thin film using atomic layer deposition as well as resists for selective wet etching.  相似文献   

8.
We report a low-cost approach to selectively deposit films of nickel and copper on glass substrates. Our approach uses microcontact printing of organic inks containing phosphonic acid groups to bind the ink to a glass substrate and phosphine groups to bind a colloidal catalyst that initiates electroless metallization. We demonstrate this procedure by fabricating patterned nickel and copper films with areas as large as 15 cm2 and minimum feature sizes of approximately 2 microm. We present studies on the use of two ink types, an oligomer and a bifunctional molecule, and demonstrate that pattern quality and adhesion of the metallized films depends on the molecular weight of the ink and the ratio of phosphine and phosphonic acid groups.  相似文献   

9.
Trinkle CA  Lee LP 《Lab on a chip》2011,11(3):455-459
Microcontact printing (μCP) is a rapid, inexpensive way to create microscale chemical or biochemical patterns on a target surface. This microstamping method can be used to selectively modify a wide array of surface properties, from wettability and protein adsorption to chemical etch susceptibility. However, controlling the absolute location of features created with microcontact printing is difficult; this lack of precision makes it challenging to integrate with other microfabrication methods or to create complex, multi-chemical patterns on a single surface. In this research, we demonstrate a novel method of controlling the placement of microcontact printing stamps by using an integrated kinematic coupling device. This technique relies on mechanical reference points for rapid, optics-free registry of the stamp and allows μCP stamps to be quickly removed and replaced or even exchanged with submicron repeatability.  相似文献   

10.
11.
We describe a straightforward approach to the covalent immobilization of cytophilic proteins by microcontact printing, which can be used to pattern cells on substrates. Cytophilic proteins are printed in micropatterns on reactive self-assembled monolayers by using imine chemistry. An aldehyde-terminated monolayer on glass or on gold was obtained by the reaction between an amino-terminated monolayer and terephthaldialdehyde. The aldehyde monolayer was employed as a substrate for the direct microcontact printing of bioengineered, collagen-like proteins by using an oxidized poly(dimethylsiloxane) (PDMS) stamp. After immobilization of the proteins into adhesive "islands", the remaining areas were blocked with amino-poly(ethylene glycol), which forms a layer that is resistant to cell adhesion. Human malignant carcinoma (HeLa) cells were seeded and incubated onto the patterned substrate. It was found that these cells adhere to and spread selectively on the protein islands, and avoid the poly(ethylene glycol) (PEG) zones. These findings illustrate the importance of microcontact printing as a method for positioning proteins at surfaces and demonstrate the scope of controlled surface chemistry to direct cell adhesion.  相似文献   

12.
The droplet formation, the rheological properties of jettable ink and polymer inks in inkjet printing are summarized.  相似文献   

13.
Spreading in microcontact printing refers to the process or processes by which the ink molecules end up in the parts of the substrate that are adjacent to the contacted areas but which are not contacted themselves. This has been investigated for different inking concentrations of 16-mercaptohexadecanoic acid (MHDA). Spreading of MHDA takes place with retention of a well-defined demarcation. Feature sizes can be controlled by varying the contact times. Spreading, however, only takes place beyond a certain threshold concentration. For low ink concentrations the edges of stamp features dominate the ink transfer. For these low concentrations the extent of this edge dominance depends strongly on ink concentration rather than on contact time. These observations indicate a dominant role of the stamp surface in the processes of pattern formation and spreading.  相似文献   

14.
A novel technique for preparation of dipolar colloid particles has been developed which is based on microcontact printing of films of water-insoluble ionic surfactants onto monolayers of colloid particles of opposite surface charge.  相似文献   

15.
16.
Mammalian cells redirect their movement in response to changes in the physical properties of their extracellular matrix (ECM) adhesive scaffolds, including changes in available substrate area, shape, or flexibility. Yet, little is known about the cell's ability to discriminate between different types of spatial signals. Here we utilize a soft-lithography-based, microcontact printing technology in combination with automated computerized image analysis to explore the relationship between ECM geometry and directional motility. When fibroblast cells were cultured on fibronectin-coated adhesive islands with the same area (900 micrometers2) but different geometric forms (square, triangle, pentagon, hexagon, trapezoid, various parallelograms) and aspect ratios, cells preferentially extended new lamellipodia from their corners. In addition, by imposing these simple geometric constraints through ECM, cells were directed to deposit new fibronectin fibrils in these same corner regions. These data indicate that mammalian cells can sense edges within ECM patterns that exhibit a wide range of angularity and that they use these spatial cues to guide where they will deposit ECM and extend new motile processes during the process of directional migration.  相似文献   

17.
A novel approach is presented that allows high-quality, 3D patterned bionanocomposite layered films to be constructed on substrates whose surface properties are incompatible with existing self-assembly methods.  相似文献   

18.
YAG:Ce and YAG:Eu sols were synthesized by a polymeric sol-gel route. The crystallization temperature of YAG was determined by X-ray diffraction as a function of the calcination temperature, revealing that YAG starts to crystallize directly from the amorphous phase at 800?°C. The effects of the thermal treatment and the dopant amount on the photoluminescent properties were studied, observing the highest emission after calcination at 1000?°C for 1?h in both cases and with a concentration of 1 and 3?mol% of Ce and Eu, respectively. Core-shell materials were prepared by dipping YAG:Ce or YAG:Eu sintered pellets into the synthesized sols and then, these materials were calcined at 1000?°C for 1?h. An effective energy transfer from Ce to Eu was observed in the sample YAG:Eu (core)–YAG:Ce (shell) when blue light (λ?=?465?nm) is used as excitation source. This wavelength excites the Ce but not the Eu; however, in the photoluminescence emission spectrum, the bands associated to both ions can be clearly detected, confirming that the core-shell strategy is a good method for the preparation of warmer white LEDs.  相似文献   

19.
The possibility of comparing inkjet printing inks by micellar electrokinetic capillary electrophoresis (MECC) with diode array detection was studied. An analytical procedure was designed and successfully applied to discriminate between the electrophoretic profiles of inks (extracted from paper) produced by five well-known manufacturers. The separation process was conducted in a polyimide-coated fused silica capillary (ID 50 μm, 60 cm total/50 cm effective length) with +30 kV high voltage applied. Background electrolyte was used of the following optimum composition: 40 mM sodium borate buffer, 20 mM sodium dodecyl sulphate(IV) (SDS) and 10% (v/v) acetonitrile (pH 9.56). The experimental conditions were adjusted in terms of resolution and analysis time. The best results were obtained at 10 and 25 °C storage and capillary temperature, respectively, using 25 dots (ø 0.8 mm) cut from printouts as the sample and BGE diluted with water (1:99, v/v) as the injecting solution. The MECC separation of main printing ink components by the proposed method showed excellent precision - the RSD value of the migration time calculated for each of the investigated peaks did not exceed 3.3%. The optimized method was applied to group identification and differentiation of: (a) three colours of printing inks, (b) inks from different manufacturers (Hewlett-Packard, Epson, Brother, Lexmark and Canon) and (c) inks from different printer models. In all these cases, inks were successfully differentiated on the basis of position (migration time) and shape of their characteristic peaks.  相似文献   

20.
In this paper, we describe an easy and reliable method for the production of patterned monolayers of Co nanoparticles. A two-dimensional monolayer of Co nanoparticles is fabricated by spreading a nanoparticle solution over an air-water interface and then transferring it to a hydrophobic substrate by using the Langmuir-Blodgett (LB) method. Transmission electron microscopy (TEM) was used to show that, with increasing surface pressure, the Co nanoparticles become well-organized into a Langmuir monolayer with a hexagonal close-packed structure. By controlling the pH of the subphase, it was found that a monolayer of Co nanoparticles with long-range order could be obtained. Further, by transferring the Langmuir monolayer onto a poly(dimethoxysilane) (PDMS) mold, the selective micropatterning of the Co nanoparticles could be achieved on a patterned electronic circuit. The electronic transport properties of the Co nanoparticles showed the ohmic I-V curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号