Titanium dioxide (TiO2) is recognized as the most efficient photocatalytic material, but due to its large band gap energy it can only be excited by UV irradiation. Doping TiO2 with nitrogen is a promising modification method for the utilization of visible light in photocatalysis. In this work, nitrogen-doped TiO2 films were grown by atomic layer deposition (ALD) using TiCl4, NH3 and water as precursors. All growth experiments were done at 500 °C. The films were characterized by XRD, XPS, SEM and UV–vis spectrometry. The influence of nitrogen doping on the photocatalytic activity of the films in the UV and visible light was evaluated by the degradation of a thin layer of stearic acid and by linear sweep voltammetry. Light-induced superhydrophilicity of the films was also studied. It was found that the films could be excited by visible light, but they also suffered from increased recombination. 相似文献
Titanium dioxide (TiO2) nanotubes are fabricated into anodic aluminum oxide (AAO) membrane via atomic layer deposition (ALD). For the ALD of TiO2, gaseous precursors, titanium (IV) isopropoxide and water are sequentially applied and chemically reacted with each other. A thickness of nanotubes is precisely controlled by the applied cycle numbers of ALD and the morphology of nanostructures is investigated by SEM and TEM. The amorphous property of TiO2 nanostructures is revealed by XRD and the composition of nanotubes is measured by TEM–EDX. The impurity contents and binding structure of the nanostructures are analyzed by XPS. The electrostatic capacitance of TiO2 nanotubes into AAO is 480 μF/cm2 and it is about 3 times higher compared with AAO membrane (172 μF/cm2). 相似文献
AbstractAtomic layer deposition (ALD) is a vapor-phase technique capable of producing inorganic thin films with precise control over the thickness of the film. The ALD method offers high precision in the design of advanced 3D nanostructures. In this article, silica and alumina thin films have been grown over fibers of cellulose by the ALD process. The morphology and the chemical composition of the fabricated thin films are characterized, as well as their thermal durability through elevated temperatures. Moreover, XPS is used to confirm the phases of the alumina nanofilms and to further understand the deposition process on the cellulose microfibers. 相似文献
Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed. 相似文献
Three new Cu(II), Zn(II), Co(II) 5,15-di (4-hydroxyphenyl)-10, 20-diphenyl-porphyrin (CuDHPP, ZnDHPP, CoDHPP) and the corresponding metalloporphyrins–TiO2 photocatalysts CuDHPP–TiO2, ZnDHPP–TiO2, CoDHPP–TiO2 were synthesized and characterized by SEM, XRD, FT-IR, and DRS. The results revealed that the metalloporphyrins impregnated onto the surface of TiO2 did not change the phase composition and particle sizes of TiO2 samples, but increased the photocatalytic efficiency. In addition, photoluminescence study showed that the three photocatalysts could successfully increase the separation efficiency of the photoinduced electron and hole. The photodegrading 4-NP experiments indicated that the three photocatalysts greatly enhanced the photocatalytic activity of bare TiO2, and the photocatalytic activity of CuDHPP–TiO2 was the highest. Moreover, the possible mechanism for the photodegradation of 4-NP was also proposed. 相似文献
A new composite consisting of TiO(2) nanotubes and CdS nanoparticles, where CdS particles bind covalently to the titania surface through a bifunctional organic linker, was successfully fabricated; this titania nanotube-based composite shows enhanced photocatalytic activity under visible-light irradiation. 相似文献
In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes. 相似文献
Journal of Solid State Electrochemistry - In spite of the TiO2 compact layer (TCL) being widely used, it still needs more study. This paper took Ni-doped TCLs as the research target, using an... 相似文献
Bacterial cellulose (BC)/GEL composites were prepared in situ by adding gelatin into BC-producing culture medium. The addition of gelatin interfered with the formation of the BC pellicle structure and thus made the BC yield and growth rate quite different from that of pure BC. Scanning electron microscope images showed that the width of cellulose ribbons became narrower than that of pure BC and the gelatin filled in the pores of BC to form a dense structure. The addition level of gelatin significantly influences the yield of BC/GEL composites. An optimum value of 0.5 wt/v% gelatin was attained, with which the highest yield of 0.0541 g/100 mL was achieved. Under this condition, the weight percentage of gelatin in BC/GEL composite was 65 wt%. BC/GEL composites were treated with glutaraldehyde to crosslink BC fibrils and gelatin. The crosslinking degree, determined by the concentration of glutaraldehyde and crosslinking time, could affect the swelling behavior, thermal stability and mechanical properties of composites. With increasing of the crosslinking degree, the crystallinity index and swelling behavior of the composites decreased. The increase in the crosslinking degree also descreased the composite’s strain at break in elongation but increased the compressive and tensile strength. Covalent bonding between BC and gelatin provides good strength retention to the glutaraldehyde-treated composites with a high crosslinking degree. Considering the cytocompatibility and properties of composites, the most appropriate concentration of glutaraldehyde and crosslinking time were 1.0 wt/v% and 24 h, respectively. 相似文献
Research on Chemical Intermediates - We synthesized a novel dihydroxotin(IV) porphyrin complex with full structural confirmation. The tin complex further converted to TiO2 composite... 相似文献
Anatase TiO2/nanocellulose composite was prepared for the first time via a one-step method at a relatively low temperature by using cellulose nanofibers as carrier and tetrabutyl titanate as titanium precursor. The morphology, structure and element composition of the composite were characterized by SEM, EDS, TEM, XRD, XPS and UV–vis DRS. The specific surface area and thermal stability of the composite were investigated by N2 adsorption–desorption and thermogravimetric analysis, respectively, and the band gaps of the prepared photocatalysts were calculated based on the UV–vis DRS results. In addition, the prepared composite was used for the photocatalytic degradation of methyl orange (aqueous solution, 40 mg L−1). It was found that the composite had a good morphology and anatase crystal structure, and Ti-O-C bond was formed between TiO2 and nanocellulose. The specific surface area of composite was increased and the thermal stability was decreased compared with the cellulose nanofiber. Moreover, the degradation rate of methyl orange was achieved as 99.72% within 30 min, and no obvious activity loss was observed after five cycles. This work might give some insights into the design of efficient photocatalysts for the treatment of organic dye wastewater. 相似文献
A green low-temperature deposition and crystallization method was developed to uniformly coat RuO2/TiO2 nanocomposite onto cotton fabrics for efficient solar photocatalysis. The sequential growth of anatase TiO2 and rutile RuO2 on the surface of the cotton was confirmed by XRD, Raman and XPS characterizations. After the deposition of RuO2, the optical properties of RuO2/TiO2/Cotton revealed better visible light absorption and higher charge mobility, and XPS spectra showed that the peaks of Ti 2p3/2 and O 1 s shifted towards the lower binding energies due to the interfacial charge transfer at the robust RuO2/TiO2 mediated with Ti–O–Ru bonding. The photocatalytic performances of the RuO2/TiO2/Cotton were evaluated towards the photodegradation of o-toluidine (o-TD), an aromatic amine widely used in the chemical industry. Compared with TiO2/Cotton, RuO2/TiO2/Cotton exhibited a remarkable improvement in the photocatalytic activity. The presence of RuO2 on the surface of TiO2/Cotton narrowed the band gap and improved the absorption of visible light. Moreover, the successful formation of a robust heterogeneous interface between TiO2 and RuO2 suppressed the charge carrier (e–/h+) recombination effectively. With the RuO2/TiO2 coating chemically bound to the cotton fibers, RuO2/TiO2/Cotton delivered long-term stability in photocatalytic activity and high mechanical durability even after 20 washing times. Our facile and scalable synthesis strategy paved a universal route to efficient immobilization of visible-light-responsible TiO2-based photocatalysts on the low-heat-resistant substrates for various applications.