首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Silver ions undergo reduction reactions induced by radiolytically produced products of tert-butanol, a commonly used solvent and scavenger for hydroxyl radicals. Radiolytic reduction of silver ions and the subsequent formation of their clusters are compared with the corresponding processes in aqueous solution. The surface plasmon UV-Vis absorption band of silver nanocrystallites obtained by bombardment of tert-butanol solutions of silver salts with electron pulses showed an absorption maximum at 400 nm. Formation of different sizes of silver nanoparticles was found to be dependent on the dose rate. The nanocrystallites were found to have an average size of 20 nm.  相似文献   

2.
Surface-enhanced Raman scattering (SERS) of 4-mercaptopyridine (4-mpy) adsorbed on HNO3 etched silver foil, chemically deposited silver films (silver mirror) and silver colloids were measured. The SERS study has revealed that 4-mpy was adsorbed onto the three kinds of silver surfaces by a sulfur-silver bond with the plane of pyridine ring being normal to the silver substrates. The structure of 4-mpy adsorbed on the silver surfaces depends largely on the pH values of environment. When the pH values of the environment are changed, the structure of 4-mpy adsorbed on silver surfaces can easily be altered through a protonation or deprotonation reaction occurring on the N atom of the pyridine ring, and the modified structure shows unique characters on the SERS spectrum. Owing to the remarkable enhancement ability of SERS technique and characteristic spectrum of different species, a monolayer of 4-mpy assembled on a silver mirror holds potential as a H+ sensor for highly sensitive detection of the proton concentration in an aqueous solution.  相似文献   

3.
We demonstrate a highly efficient and large area synthesis of 2-D graphene nanosheets on the surface of flexible graphite foils by electrochemical exfoliation of graphite in an effective electrolyte, poly(sodium-4-styrenesulfonate) solution.A constant current of 150 mA/cm was applied to the vertically aligned graphite (anode) and copper (cathode) sheet in the PSS electrolyte solution during a preset time for electrolytic surface exfoliation of the graphite sheet; uniform expansion of the graphite foil was observed. This expanded foil was characterized using scanning electron microscopy, confocal laser scanning microscopy, and high-resolution transmission electron microscopy. Furthermore, we demonstrate the ability of this high surface area foil, covered with uniform graphene, to enable improved electrolyte permeability and Li ion transfer, thereby enhancing electrochemical performance of Li ion battery electrodes.  相似文献   

4.
We report the ligand-exchange reaction between the optically inactive racemic penicillamine monolayer on a silver nanocluster surface and enantiopure D- or L-penicillamine dissolved in solution. Emergence of the identical band positions in the gel electrophoresis separation assures the presence of size-invariant silver nanoclusters (1.05 and 1.30 nm in core diameter) during the ligand-exchange reaction and allows us to further examine the optical/chiroptical properties of these nanoclusters. Consequently, chiral functionalization of the achiral silver nanoclusters has been demonstrated, yielding large Cotton effects in metal-based electronic transitions with an almost mirror-image relationship between the enantiomeric compounds. The ligand-exchange experiments as well as the normal syntheses of the silver nanoclusters revealed that their absorption profiles and anisotropy factors were strongly dependent on the enantiomeric purity (or enantiomeric excess) of surface chiral penicillamine, so that (several-fold) larger chiroptical responses of the silver nanoclusters as compared to those of the analogous gold clusters with a comparable size could be induced by the metal core deformation or rearrangement along with a universally influential vicinal contribution from the chiral ligand field.  相似文献   

5.
It was shown that the reaction of solid polyoxometalate compounds containing tetraamine cations of nickel(II) or copper(II) with an aqueous solution of silver(I) nitrate leads to the formation of nanoclusters of the metal with sizes of 6–10 nm, localized on the surface of the crystalline matrix. It was established that the realization of the oxidation–reduction processes depends substantially both on the cationic and on the anionic component of the polyoxometalate complexes.  相似文献   

6.
Simple methods of preparing silver and gold nanoshells on the surfaces of monodispersed polystyrene microspheres of different sizes as well as of silver nanoshells on free-standing gold nanoparticles are presented. The plasmon resonance absorption spectra of these materials are presented and compared to predictions of extended Mie scattering theory. Both silver and gold nanoshells were grown on polystyrene microspheres with diameters ranging from 188 to 543 nm. The commercially available, initially carboxylate-terminated polystyrene spheres were reacted with 2-aminoethanethiol hydrochloride (AET) to yield thiol-terminated microspheres to which gold nanoparticles were then attached. Reduction of silver nitrate or gold hydroxide onto these gold-decorated microspheres resulted in increasing coverage of silver or gold on the polystyrene core. The nanoshells were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and UV–vis spectroscopy. By varying the core size of the polystyrene particles and the amount of metal (silver or gold) reduced onto them, the surface plasmon resonance of the nanoshell could be tuned across the visible and the near-infrared regions of the electromagnetic spectrum. Necklace-like chain aggregate structures of gold core–silver shell nanoparticles were formed by reducing silver nitrate onto free citrate-gold nanoparticles. The plasmon resonance absorption of these nanoparticles could also be systematically tuned across the visible spectrum.  相似文献   

7.
Altarpieces and polychrome carved wood from the fifteenth century AD usually exhibit golden and silvery areas by the application of a very thin foil of metal. The metal foils were normally protected from the atmosphere by a varnish or resin which maybe either preserved or absent. Moreover, they were glued to the background surface by adhesive substances (egg yolk, drying oil or animal glue). The high proportion of the glueing substances often renders the development of reaction compounds. With time, silver alters blacken or simply disappear completely. In this paper, we study the alterations to metal foils from a selection of fifteenth century artworks showing different glueing agents, organic coatings and several degrees of conservation of the organic coatings and metal leafs. The submillimetric layered structure and the high variability and low amount of most of the compounds present in the different layers, as well as their differing nature (organic and inorganic) make the use of micron-sensitive high-resolution techniques essential for their study. In particular, the high resolution, high brilliance and small footprint renders synchrotron radiation most adequate for their study. SR-XRD was performed to identify the reaction compounds formed in the different layers; μFTIR was used at to identify the silver protecting organic coatings, the metal foil glueing layers and the corresponding reaction compounds. The results obtained suggest that atmospheric corrosion is the dominant mechanism, and therefore that the degree of corrosion of the metal foils is mainly related to the conservation state of the protecting coatings.  相似文献   

8.
The liquid SIMS mass spectra of silver acetate dissolved in a glycerol matrix is discussed, with emphasis on the formation of a ‘silver mirror’ on the surface of the glycerol droplet owing to reduction of the silver acetate. Silver clusters containing up to three silver atoms have been observed from this mirrored surface; Ag3+ cluster ions are not observed in the spectrum when conditions are such that the mirror is not formed. For example, use of a slightly oxidizing matrix (o-nitrophenyl octyl ether or m-nitrobenzylalcohol) prevents formation of the ‘mirror’; only Ag+ is sputtered from this surface.  相似文献   

9.
A fast and cost-effective approach for the synthesis of substrates used in surface enhanced Raman scattering (SERS) has been developed using galvanic displacement. Deposition of silver onto commercially available Cu foil has resulted in the formation of multiple hierarchical structures, whose morphology show dependence on deposition time and temperature. Analysis of the surface structure by scanning electron microscopy revealed that the more complex silver structures correlated well with increased deposition time and temperature. Using Rhodamine 6G (R6G) as a model Raman probe it was also possible to relate the substrate morphology directly with subsequent SERS intensity from the R6G analyte as well as the reproducibility across a total of 15 replicate Raman maps (20 × 20 pixels) consisting of 400 spectra at a R6G concentration of 10(-4) M. The substrate with the highest reproducibility was then used to explore the limit of detection and this compared very favourably with colloidal-based SERS assessments of the same analyte.  相似文献   

10.
Controlled synthesis of monodisperse silver nanocubes in water   总被引:5,自引:0,他引:5  
Monodisperse silver nanocubes with edge length of 55 +/- 5 nm were, for the first time, synthesized in water on the basis of HTAB-modified silver mirror reaction at 120 degrees C (HTAB, n-hexadecyltrimethylammonium bromide). The individual nanocube was crystallographically well defined with a single crystal bonded by six {200} facets. The nanocubes were soluble to form stable aqueous solutions and had a strong tendency to assemble into two-dimensional arrays with regular checked pattern on substrate.  相似文献   

11.
Silver nuclei are produced by pulse radiolysis at the surface of AgCl nanocrystallites in the presence of an electron donor, the methyl viologen, which induces the growth of silver nuclei. The experimental results observed on the increase of the silver atom concentration and on the decay of the donor concentration during this process, which is similar to the photographic development by an electron donor, are compared with the kinetics obtained from numerical simulation. The model assumes that the formation of silver clusters with a supercritical nuclearity is required before the start of an electron transfer reaction from the two reduced forms of the donor methyl viologen to the silver clusters. The reaction is controlled by the access of the donor to the surface sites of the AgCl crystallite. The rate constant values of the successive steps of the mechanism are derived from the adjustment of calculated kinetics to experimental signals under various conditions, using a single set of parameters which are fairly suitable under all conditions studied.  相似文献   

12.
Surface enhanced Raman scattering based on silver dendrites substrate   总被引:1,自引:0,他引:1  
A simple method of the reduction of AgNO3 by copper foil in aqueous medium was used to prepare silver dendrites, which can be used as a novel good reproducible surface enhanced Raman scattering (SERS) active substrate. The SERS spectra of 4-pyridinethiol on this novel substrate reflected the different SERS activities on the minuteness and strong Ag dendrites. The electromagnetic coupling enhancement and chemical enhancement mechanisms are used to explain the SERS effect.  相似文献   

13.
This communication reports the SERS observation of p-benzosemiquinone radical anion, produced on reduction of p-benzoquinone by Ag nanoparticles at the metal-water interface. The species is positively identified by comparison of the SERS spectrum with the resonance Raman spectra of the radical anion in aqueous solution. This is a rare SERS observation of a radical intermediate formed by surface reaction on nanosize silver particles in solution.  相似文献   

14.
Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre‐treatment of silver foil enhances the number of low‐coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO2 electroreduction to CO. At −0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre‐oxidized silver foil. While transmission electron microscopy (TEM) and operando X‐ray absorption spectroscopy showed that oxygen species can survive in the bulk of the catalyst during the reaction, quasi in situ X‐ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. DFT calculations reveal that the defect‐rich surface of the plasma‐oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO2 electroreduction.  相似文献   

15.
The growth kinetics of silver nanoparticles upon silver(I) reduction with sodium citrate in an aqueous solution solubilized to a reverse micellar solution of sodium bis(2-ethylhexyl) sulfosuccinate in decane is studied spectrophotometrically under constant conditions of irradiation of the reaction mixture with visible light. The formal kinetics of the process corresponds to an autocatalytic mechanism. The effective rate constants of growth of silver nanoparticles, unlike those of gold nanoparticles, are independent of the size of the inner micellar cavity when its radius changes from 2 to 6 nm. This is most likely due to a great effect of the photochemical factor or Ag+ localization in the inner surface layer of the micelles on the rate constants.  相似文献   

16.
In this paper, we describe the first example of a sustained galvanic coating deposited on a surface from a non-aqueous liquid. We present the surface characterization of electroless silver deposits on copper substrates from a solution of Ag(+) ions in an ionic liquid based on a choline chloride (ChCl) eutectic. Through a study of these deposits and the mechanism of formation using acoustic impedance spectroscopy (QCM), probe microscopy (AFM) and electron microscopy (SEM/EDX), we demonstrate that sustained growth of the silver deposit is facilitated by the porous nature of the silver. This is in contrast to the dip-coating reaction of silver ions in aqueous media, where the reaction stops when surface coverage is reached. Electroless silver deposits of up to several microns have been obtained by dip coating in ionic liquids without the use of catalysts of strong inorganic acids.  相似文献   

17.
A nonenzymatic method was developed for the detection and quantification of hydrogen peroxide using metallic sols obtained by the reduction of silver compounds with sodium borohydride in the presence of a surface stabilizer. These sols changed color on exposure to aqueous solutions of hydrogen peroxide. The nature of the stabilizer used in sol preparation affects spectral characteristics of the final product formed in the reaction with hydrogen peroxide. In the case of polyvinyl pyrrolidone, the intensity of the surface plasmon resosnance absorption band at 405 nm decreased. In using cetyltrimethylammonium bromide, a signal at 519 nm appeared along with the similar decrease in the absorption band at 408 nm. The band intensity depends on the concentration of hydrogen peroxide. The described phenomena can form a basis for the development of procedures for the qualitative and quantitative determination of hydrogen peroxide in water bodies.  相似文献   

18.
Discrete nanosheets of silicon-doped AlPO4 molecular sieves (SAPO-34) with a thickness of ≈7 nm have been prepared through morphology-reserved synthesis with a lamellar aluminum phosphate as precursor. Cages of the nanosheets are in situ incorporated with copper oxide clusters. The CuO@SAPO-34 nanosheets exhibit a large external surface area with a high number of (010) channel pores on the surface. Due to the thin morphology, copper oxide clusters occupy the outmost cages with a probability >50 %. The distinctive configuration facilitates a new concept of pore mouth catalysis, i.e., reactant molecules larger than the pores cannot enter the interior of the molecular sieves but can interact with the CuO clusters at “the mouth” of the pore. In heterogeneous catalysis, CuO@SAPO-34 nanosheets have shown top performance in one-pot oxidation of cyclohexane to adipic acid by O2, a key compound for the manufacture of nylon-66, which is so far produced using non-green nitric acid oxidation.  相似文献   

19.
在电化学工作站上以铜箔为工作电极,以硝酸银和PVP混合液作为前驱溶液,利用循环伏安法电辅助制备了纳米银,得到在铜箔上紧密均匀分布的纳米银颗粒聚集体作为SERS基底。通过X射线粉末衍射、X射线光电子能谱、扫描电子显微镜等表征手段,对铜箔上负载的银纳米颗粒进行了形貌和成分的表征,探讨了PVP及电辅助方法对纳米银形貌及基底SERS活性的影响。以4-巯基吡啶和罗丹明6G为探针溶液研究了制备基底的SERS活性,同时还对基底的均匀性进行了研究,结果表明所制备的SERS基底具有良好的性能。  相似文献   

20.
We demonstrate that dihydroxy benzenes are excellent reducing agents and may be used to reduce silver ions to synthesize stable silver nanoparticles in air-saturated aqueous solutions. The formation of Ag nanoparticles in deaerated aqueous solution at high pH values suggests that the reduction of silver ions occurs due to oxidation of dihydroxy benzenes and probably on the surface of Ag2O. Pulse radiolysis studies show that the semi-quinone radical does not participate in the reduction of silver ions at short time scales. Nevertheless, results show that primary intermediates undergo slower transformation in the presence of dihydroxy benzenes than in their absence. This slow transformation eventually leads to the formation of silver nanoparticles. The Ag nanoparticles were characterized by UV-vis absorption spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). XRD and TEM techniques showed the presence of Ag nanoparticles with an average size of 30 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号