首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preparation of trans-[Pcb2MCl2]-type complexes (Pcb= o-HCB10H10CCH2PPh2 M = Pd, Pt), which readily undergo intramolecular metallation through the BH bonds of the carborane cage to form exocyclic compounds involving a PCCBM bond system, is described. Both monomeric compounds, trans-[MCl(B-P)Pcb], and bridged complexes, such as [Pd2Cl2(BP)2], are formed, where (BP) is intramolecular-metallated carborane phosphine. The bridging bond is readily cleaved under the action of various ligands (pyridine, PEt3, etc.) to form monomeric compounds.  相似文献   

2.
Summary The complexes K[Pt(l-aze)Cl2, [Pt(l-aze)2] and [Pd(l-aze)2] (l-aze = l-azetidine-2-carboxylate) were prepared. X-ray structures show that [Pt(l-aze)2] and [Pd(l-aze)2] are isomorphous, having a planar tetragonal geometry with a trans configuration around the Pt and Pd atoms. Slight puckerings of the MN(1)N(11)O(11) chelate ring (M = Pt or Pd) and the azetidine ring were observed. The circular dichroism (c.d.) spectra of the complexes in aqueous solution agree with the structures found in the solid state as far as the hexadecant rule is concerned, giving, for the trans configuration of [M(l-ia)2] (where ia = imino acid), the profile of the c.d. signs for the three predominant d-d transitions as: +,-,-. I.r., conductivity and n.m.r. measurements are also reported and are in accord with the proposed structures.  相似文献   

3.
The reactions between four very simply substituted phospholes and the chlorides of Ni(II), Pd(II) and Pt(II) are described. The phospholes 1-phenylphosphole, 3-methyl-1-phenyl-phosphole and 3,4dimethyl-1-phenylphosphole all readily form bis-complexes of formula L2MCl2 [L = phosphole ligand and M = Ni(II), Pd(II) or Pt(II)] or tris-complexes of formula L3MCI2. 1-n-Butyl-3,4-dimethylphosphole appears to form stable complexes only with Ni(II). Evidence is put forward which indicates that the L2MCl2 complexes exist in a four-coordinate, square-planar monomeric/five coordinate equilibrium while the L3MCl2 complexes are primarily the ionic species [L3MCl]+ Cl? in solution. Comparisons are made with the behaviour of other simple phospholes which do not form Ni(II) complexes and the results are discussed briefly in terms of both aromatic and non-aromatic phosphole models.  相似文献   

4.
《Polyhedron》1986,5(6):1213-1216
The square planar complexes cis-[MCl2(hypy)], cis-[MCl2(hyqu)], [Pt(hypy)2] [PtCl4], [Pd(hypy)2][ClO4]2 and [Pd(hyqu)2][ClO4]2 (M = Pd or Pt, hypy = 2-hydrazinopyridine, hyqu = 8-hydrazinoquinoline), in which hypy and hyqu act as bidentate chelating ligands, have been prepared and characterized. Complexes containing hyqu do not appear to have been isolated previously.  相似文献   

5.
Summary Reaction of 1 equivalent ofo-alkylaniline with Pd(OAc)2 gave the acetate bridged complexes [Pd(OAc)2L]2. The*H n.m.r. spectra showed downfield shifts for theo-benzylic protons indicating an above-plane geometry involving a significant interaction with the metal orbitals. Similar interactions were found for Pd(OAc)2L2 and Pd(OAc)2L(L) (L= differento-alkylaniline; t-butylpyridineetc.) prepared from the dimer and for Rh(CO)2Cl(L) complexes. Theo-benzylic carbons of the palladium complexes did not show downfield shifts in the13C n.m.r. spectra.  相似文献   

6.
Two new Pd(II) N-heterocyclic iminocarbene complexes (C-N)PdCl2 that contain 5-membered chelate rings have been prepared by carbene transfer from a silver iminocarbene precursor to (COD)PdCl2. The new Pd imonocarbene complexes, as well as two that have been previously reported (altogether three 5-membered and one 6-membered chelate ring complexes) have been evaluated as catalysts for the Suzuki-Miyaura coupling reaction. The complexes were found to be active in the reaction, but without exceptional catalytic performances. The 5-membered chelate ring complexes appeared to be more robust and remained active for a longer time than the 6-membered ring congener. The catalytic performance of the 5-membered chelate ring complexes appeared to be rather insensitive to the steric demands of the imine-N-aryl group. The X-ray structure of one of the Ag iminocarbene complexes reveals the κ1(C) bonding of the iminocarbene moiety in a nearly linear Ag(I) complex; two monomeric units are associated through a weak Ag-Ag interaction. The X-ray structures of two new Pd iminocarbene complexes (C-N)PdCl2 confirm the chelating κ2(C,N) nature of the iminocarbene moiety; in both complexes, the Pd-Cl distances trans to carbene-C are slightly longer than those trans to imine-N.  相似文献   

7.
The dimeric ferrocenyl-selenolate complexes of Pd and Pt, [{μ-η1-Fe(η5-C5H4Se)2}M(PnBu3)]2 (M = Pd 2, Pt 3), and the monomeric ferrocenyl(bis-selenolate) complex of platinum, [{η2-Fe(C5H4Se)2}Pt(PnBu3)2] (4), have been prepared from 1,1′-bis(trimethylsilylseleno)ferrocene 1 and trans-MCl2(PnBu3)2 and cis-PtCl2(PnBu3)2, respectively. Complexes 2 and 3 contain two edge-sharing, square-planar metal centres forming a planar M2Se2 four-membered ring and exhibit two one-electron redox waves indicating electronic communication between the two Fe centers.  相似文献   

8.
New ligand (E)-4-((dimethylamino)methyl)-2-((4,5-dimethylthiazol-2-yl)diazenyl)phenol (HDmazo) was prepared by the coupling reaction between 4,5-dimethylthiazol-2-amine and 4-((dimethylamino)methyl)phenol. Moreover, the [MCl2(HDmazo)] and [M(HDmazo)2] [MII = Pd and Pt] were prepared using the direct reaction of equivalent molar of HDmazo and Na2PdCl4 or K2PtCl4. The HDmazo and its complexes were investigated by different spectroscopic techniques. In complexes (12) HDmazo ligand behaves as bidentate style through the nitrogen of azo group and nitrogen of thiazole ring towards Pd(II) and Pt(II). Or in a bidentate fashion via the oxygen atom of the hydroxylate group and nitrogen atom of azo group as mono-anion in complexes (34). Further, the study of biological activity against four pathogenic bacteria showed that compound (3) exhibited good activity compared to other compounds. Additional the anti-tumor action against A2870 cell lines was screened, and the complexes (1) and (2) displayed good activity with 7.45 ± 0.98 µM and 13.23 ± 1.43 µM, respectively. The binding mechanism of the prepared compounds with EGFR tyrosine kinase, was investigated using molecular docking experiments.  相似文献   

9.
Cationic palladium(II) and rhodium(I) complexes bearing 1,2-diaryl-3,4-bis[(2,4,6-tri-t-butylphenyl)phosphinidene]cyclobutene ligands (DPCB–Y) were prepared and their structures and catalytic activity were examined (aryl = phenyl (DPCB), 4-methoxyphenyl (DPCB–OMe), 4-(trifluoromethyl)phenyl (DPCB–CF3)). The palladium complexes [Pd(MeCN)2(DPCB–Y)]X2 (X = OTf, BF4, BAr4 (Ar = 3,5-bis(trifluoromethyl)phenyl)) were prepared by the reactions of DPCB–Y with [Pd(MeCN)4]X2, which were generated from Pd(OAc)2 and HX in MeCN. On the other hand, the rhodium complexes [Rh(MeCN)2(DPCB–Y)]OTf were prepared by the treatment of [Rh(μ-Cl)(cyclooctene)2]2 with DPCB–Y in CH2Cl2, followed by treatment with AgOTf in the presence of MeCN. The cationic complexes catalyzed conjugate addition of benzyl carbamate to α,β-unsaturated ketones.  相似文献   

10.
Complexes of Pd(II) with aminobutyric acid AmH = NH2CH(CH2CH3)COOH, namely, trans-[Pd(AmH)2Cl2] with monodentate (via the NH2 group) AmH ligands and cis-, trans-Pd(Am)2 with bidentate (via NH2 and COO groups) ligands have been synthesized for the first time. Elemental analysis and IR and NMR spectroscopy were used to identify the synthesized compounds. The NMR spectra of the Pd(II) complexes were interpreted by comparing them with the NMR spectra of the analogous complexes of Pt(II). For Pt(II) and Pd(II) complexes with aminobutyric acid used as examples, an approach to identification of diastereomer bis-aminoacid complexes in specimens with racemic aminoacids by NMR spectroscopy is demonstrated.  相似文献   

11.
A series of bis-phosphine monoxide (BPMO) palladium(II) and platinum(II) cationic complexes of the type [M(BPMO-κ2-P,O)2][X]2 (M = Pd, Pt; BPMO = Ph2P-(CH2)n-P(O)Ph2 with n = 1 (dppmO), 2 (dppeO), 3 (dpppO); X = BF4, TfO) were prepared from the corresponding chlorides [MCl2(BPMO-κ1-P)2] upon treatment with 2 equiv. of AgX in wet acetone/CH2Cl2 or MeOH solutions. They were characterized by 1H and 31P{1H} NMR spectroscopies and, in the case of the complex [Pt(dppeO-κ2-P,O)2][BF4]2, also by X-ray crystallography. These complexes were tested as catalysts in some Diels-Alder and oxidation reactions with different substrates. In the latter reaction Pt(II) complexes showed moderate activity, while for the former one, both classes of complexes were active in the C-C coupling, in particular the Pt(II) species showed interesting high endo/exo diasteroselectivity depending on the counteranion.  相似文献   

12.
Complexes of Mn(II), Co(II), Ni(II), Pd(II) and Pt(II) were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II), Co(II) and Ni(II) complexes in DMF correspond to non electrolyte nature, whereas Pd(II) and Pt(II) complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II), Co(II) and Ni(II) complexes, whereas square planar geometry assigned for Pd(II) and Pt(II). In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola) and some compounds found to be more active as commercially available fungicide like Chlorothalonil.  相似文献   

13.
New bis(oxazoline) ligands (BOXs) containing biaryl substitutents at the C-4 position and H or CH2OR substituents at the C-5 position have been synthesized using Suzuki cross-coupling as the main tool for structural diversity. Copper, zinc, and palladium complexes of the prepared BOXs have been evaluated in the following catalytic asymmetric processes: Acylation with kinetic resolution of trans-1,2-cyclohexanediol (Cu), enantioselective Friedel-Crafts alkylation of indole (Zn), and enantioselective alkylation of 3-acetoxy-1,3-diphenylpropene (Pd).  相似文献   

14.
A series of well-defined N-heterocyclic carbene palladium (II) complexes with general formula (NHC)Pd(N˄O)(OAc) were prepared through reaction of Pd (NHC)(OAc)2(H2O) with 1-methyl-1H-pyrazole-3-carboxylic acid or 1-methyl-1H-indazole-3-carboxylic acid in the presence of K2CO3. These complexes were then used for desulfinative Sonogashira coupling of arylsulfonyl hydrazides with terminal alkynes. With low catalyst loading, all synthesized palladium compounds exhibited moderate to high catalytic activities for the reactions.  相似文献   

15.
Novel neutral biimidazolate or bibenzimidazolate palladium(II) and platinum(II) complexes of the type M(NN)2(dpe) [M = Pd, Pt; (NN)22? = BiIm2?, BiBzIm2?. dpe = 1,2-bis(diphenylphosphino) ethane] have been obtained by reacting MCl2(dpe) with TI2(NN)2. Complexes M(NN)2(dpe) which are Lewis bases react with HClO4 or [M(dpe)(Me2CO)2](ClO4)2 to yield, respectively, mononuclear cationic complexes of general formula [M{H2(NN)2](dpe) (M = Pd, Pt; H2(NN)2 = H2BiIm, H2BiBzIm) and homobinuclear palladium(II) or platinum(II) cationic complexes of the type [M2{μ - (NN)2}(dpe)2](ClO4)2. Reactions of M(BiBzIm)(dpe) with [Rh(COD) (Me2CO)X](ClO4) render similar heterobinuclear palladium(II)-rhodium(I) and platinum(II)-rhodium(I) cationic complexes, of general formula [(dpe)M(μ-BiBzIm)Rh(COD)](ClO4) (M = Pd, Pt; COD = 1,5-cyclooctadiene). Di- and mono-carbonyl derivatives [(dpe)M(μ-BiBzIm)Rh(CO)L](ClO4) (M = Pd, Pt; L = CO, PPh3) have also been prepared. The structures of the resulting complexes have been elucidated by conductance studies and IR spectroscopy.  相似文献   

16.
A series of new ethylene-bridged bis(imidazolium) halides with various N-substitutions were synthesized. Complexation of these imidazolium halides with Pd(OAc)2 produced new Pd(II) ethylene-bridged bis(carbene) complexes. Crystallographic analyses of some of the new imidazolium salts and Pd(II) complexes were determined. Applications of these seven-member palladacycles in Suzuki and Heck coupling reactions produced comparable catalytic activities to those of six-member analogs.  相似文献   

17.
Juzo Oyamada 《Tetrahedron》2009,65(19):3842-8145
A Pt(II) catalyst showed a drastic effect on hydroarylation of alkynes with pyrroles and furans compared with Pd(OAc)2 catalyst. The hydroarylation reactions proceeded smoothly under mild conditions to give double-hydroarylation products in good yields. Mono-adducts were formed only when the second hydroarylation was inhibited by steric hindrance of substrates or low reactivity of the mono-adducts.  相似文献   

18.
The electronic absorption spectra of palladium(II) diacetate (PDA) complexes with phosphines and sulfides (D) with the composition Pd(OAc)2 · 2D (1: 2) contain an intense charge transfer band at λmax ∼ 300 nm (ɛ ∼ 15 000) and do not absorb in the region of 400 nm. Polynuclear compounds such as PDA trimer [Pd(OAc)2]3, trimer complexes with D, and four- and six-membered palladium metallocyclic compounds formed in the interaction of PDA with mercaptans absorb at longer wavelengths. The electronic absorption spectra of all the palladium polynuclear compounds (clusters) contain bands at λmax ∼ 400 nm (ɛ ∼ 1000). The appearance of these bands in the spectra of palladium clusters is evidence of the formation of chemical bonds between neighboring Pd atoms, although Pd…Pd distances substantially exceed the sum of the covalent radii of palladium atoms.  相似文献   

19.
Pd‐catalyzed oxidative coupling reaction was of great importance in the aromatic C? H activation and the formation of new C? O and C? C bonds. Sanford has pioneered practical, directed C? H activation reactions employing Pd(OAc)2 as catalyst since 2004. However, until now, the speculated reactive Pd(IV) transient intermediates in these reactions have not been isolated or directly detected from reaction solution. Electrospray ionization tandem mass spectrometry (ESI‐MS/MS) was used to intercept and characterize the reactive Pd(IV) transient intermediates in the solutions of Pd(OAc)2‐catalyzed oxidative coupling reactions. In this study, the Pd(IV) transient intermediates were detected from the solution of Pd(OAc)2‐catalyzed oxidative coupling reactions by ESI‐MS and the MS/MS of the intercepted Pd(IV) transient intermediate in reaction system was the same with the synthesized authentic Pd(IV) complex. Our ESI‐MS(/MS) studies confirmed the presence of Pd(IV) reaction transient intermediates. Most interestingly, the MS/MS of Pd(IV) transient intermediates showed the reductive elimination reactivity to Pd(II) complexes with new C? O bond formation into product in gas phase, which was consistent with the proposed reactivity of the Pd(IV) transient intermediates in solution.  相似文献   

20.
A series of di- and trithiosemicarbazone ligands as well as their Pd(II) and Pt(II) 1,3,5-triaza-7-phosphaadamantane (PTA) complexes have been synthesised using templated reactions between various substituted salicylaldimine thiosemicarbazone ligands and metal precursors of the general formula cis-[M(PTA)2Cl2], where M = Pd or Pt. Characterization of these complexes was achieved using various analytical and spectroscopic techniques: elemental analysis, ESI-MS, FT-IR, and NMR (1H, 13C{1H} and 31P{1H}) spectroscopy. The data revealed tridentate (O-N-S) coordination of the thiosemicarbazone moieties via the imine nitrogen, thiolato sulfur and phenolic oxygen to each metal center. In vitro biological evaluation of selected compounds was conducted against WHCO1 oesophageal cancer cells. Some of the multimeric compounds display some promising biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号