首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
The influence of group 15 various substituents and effect of metal centers on metal-borane interactions and structural isomers of transition metal-borane complexes W(CO)5(BH3 · AH3) and M(CO)5(BH3 · PH3) (A = N, P, As, and Sb; M = Cr, Mo, and W), were investigated by pure density functional theory at BP86 level. The following results were observed: (a) the ground state is monodentate, η1, with C1 point group; (b) in all complexes, the η1 isomer with CS symmetry on potential energy surface is the transition state for oscillating borane; (c) the η2 isomer is the transition state for the hydrogens interchange mechanism; (d) in W(CO)5(BH3 · AH3), the degree of pyramidalization at boron, interaction energy as well as charge transfer between metal and boron moieties, energy barrier for interchanging hydrogens, and diffuseness of A increase along the series A = Sb < As < P < N; (e) in M(CO)5(BH3 · PH3), interaction energy is ordered as M = W > Cr > Mo, while energy barrier for interchanging hydrogens decreases in the order of M = Cr > W > Mo.  相似文献   

2.
Tetrahydroborate enclathrated sodalites with gallosilicate and aluminogermanate host framework were synthesized under mild hydrothermal conditions and characterized by X-ray powder diffraction and IR spectroscopy. Crystal structures were refined in the space group P-43n from X-ray powder data using the Rietveld method. Na8[GaSiO4]6(BH4)2: a=895.90(1) pm, V=0.71909(3)×10−6 nm3, RP=0.074, RB=0.022, Na8[AlGeO4]6(BH4)2: a=905.89(2) pm, V=0.74340(6)×10−6 nm3, RP=0.082, RB=0.026. The tetrahedral framework T-atoms are completely ordered in each case and the boron atoms are located at the centre of the sodalite cages. The hydrogen atoms of the enclathrated anions were refined on x, x, x positions, restraining them to boron-hydrogen distances of 116.8 pm as found in NaBD4.The IR-absorption spectra of the novel phases show the typical bands of the tetrahedral group as found in the spectrum of pure sodium boron hydride.The new sodalites are discussed as interesting -containing model compounds which could release pure hydrogen.  相似文献   

3.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

4.
The interaction of palladium(+1) cluster Pd4(μ-CO)4(μ-OAc)4 with saturated and unsaturated carboxylic acids was studied. It was found, that the substitution of acetates groups on others carboxylates leads to the clusters with different nuclearity. Palladium(+1) carbonyl carboxylate complexes of composition [Pd(μ-CO)(μ-OCOR)]n, where R = CF3, CCl3, CH2Cl, MeCH = CMe, Me, Pri, Bu, Bui, Butert, n-C5H11 and n = 4 or 6 were synthesized. According to X-ray data all clusters possess cyclic planar metal cores with alternate pairs of μ-carbonyl and μ-carboxylate ligands. The presence of bulky alkyl fragments in the carboxylate ligand increases the nuclearity of the cluster compared to that of the starting palladium(+1) carbonyl acetate of composition Pd4(μ-CO)4(μ-OAc)4 due, apparently, to steric hindrance.  相似文献   

5.
Organotin(IV) complexes of [SnR(4−n)Cln] (n = 2, R = Me, nBu; n = 1, R = Ph) react with the bidentate pyridyl ligand 4,4′-di-tert-butyl-2,2′-bipyridine (bu2bpy) to give hexa-coordinated adducts with the general formula [SnR(4−n)Cln(bu2bpy)]. However, the reaction of these organotin(IV) complexes with the corresponding monodentate ligand 4-tert-butylpyridine (bupy) resulted in the formation of the hexa-coordinated complex [SnMe2Cl2(bupy)2] and the penta-coordinated complexes [SnR(4−n)Cln(bupy)] (n = 2, R = nBu; n = 1, R = Ph). Moreover, the reaction of the above organotin(IV) complexes with 4,4′-trimethylenedipyridine (tmdp) yields hexa-coordinated adducts with the general formula [SnR2Cl2(tmdp)] (R = Me, nBu) and the penta-coordinated complex [ClPh3Sn-μ-(tmdp)SnPh3Cl] in the solid state. The resulting complexes have been characterized by multinuclear NMR (1H, 13C, 119Sn) spectroscopy and elemental analysis. NMR data shows that the triphenyltin(IV) adducts are not stable in solution and dissociate to give tetra-coordinated tin(IV) complexes. The X-ray crystal structure determination of [SnMe2Cl2(bu2bpy)] reveals that the tin atom is hexa-coordinated in an octahedral geometry with a trans-[SnMe2] configuration.  相似文献   

6.
There has been speculations on the structures of TiF4 polymeric complexes {TiF4L}n (L = molecular donor) for several decades, however no structurally characterized examples have been reported. In this work the complex {TiF4(PhCN)}3 was isolated from a solution of TiF4 in PhCN (donor number DN = 11.9 kcal mol−1) as well as from the mixtures PhCN/CH2Cl2 and PhCN/toluene and characterized by X-ray, IR, NMR, EI-MS. The structure of the complex {TiF4(PhCN)}3 can be regarded as formed by combining three face-TiF3(PhCN)(μ-F) units, containing octahedrally coordinated titanium centers surrounded by three terminal fluorine atoms on the face of the octahedron and the bridging fluorine atoms in cis-positions with respect to each other. The structure of {TiF4(PhCN)}3 represents the first example of a trimeric pseudo pentahalide MX4L (M = Ti, Zr, X = halogen, D = ligand), a class of potentially interesting Lewis acids. The characterization of {TiF4(PhCN)}3 by 19F NMR revealed that in solution it dissociated to a mixture of [TiF3(PhCN)3]+, TiF4(PhCN)2 and oligomers including [Ti4F18]2− and {TiF4(PhCN)}n. The existence of oligomeric complexes containing face-{TiF3(PhCN)3−n(μ-F)n} (n = 1-3) fragments was established by one- and two-dimensional variable temperature 19F NMR. In contrast, TiF4 has a low solubility in SO2, because the donor strength of SO2 (DN = 6.5 ± 2.2 kcal mol−1) is too weak to fully convert polymeric TiF4 into soluble TiF4-SO2 donor-acceptor adducts. TiF4 and MeCN (DN = 14.1 kcal mol−1) formed only the molecular complex TiF4(MeCN)2, characterized by preliminary X-ray structure, IR and EI-MS. Thus mononuclear donor-acceptor complexes TiF4L2 can only be isolated from MeCN and stronger basic solvents.  相似文献   

7.
Thermal properties and thermal decompositions of [NEt4]2[M(dmit)2] (M = Ni(II), Pd(II), dmit = 1,3-dithiole-2-thione-4,5-dithiolate) have been studied by thermogravimetry (TG). The TG analysis has shown that the complexes are thermally stable up to 460 K and the decomposition of the complexes occurs in three consecutive stages up to 873 K. A thermal stability scale for [M(dmit)2]n anions was based on the thermal properties. Kinetics parameters, such as activation energy, Ea, and kinetic apparent pre-exponential factor, ln Aapp, have been calculated from the thermogravimetric data at heating rates of 10, 15, 20 and 25 K/min involving differential (Friedman's equation) and integral (Flynn-Wall-Ozawa's equation) methods.  相似文献   

8.
Treatment of CpTiCl3 and Cp2TiCl2 with NaB3H8 affords the titanium(III) hydroborate compounds [CpTiCl(BH4)]2 and Cp2Ti(B3H8), respectively. The former compound arises by means of a new reaction, the metal-induced fragmentation of the B3H8 anion, and can also be made by treating CpTiCl3 with LiBH4. The latter compound has been previously described, but not characterized crystallographically. Both compounds have been studied by single crystal X-ray diffraction. Dimeric [CpTiCl(BH4)]2 has bridging chloride ligands and terminal Cp and BH4 ligands. The Ti-Ti distance is 3.452(1) Å, which indicates that there is no metal-metal bonding interaction. The Ti-Cl distances are 2.440(2) Å and the Ti-Cl-Ti and Cl-Ti-Cl angles of 89.97(8) and 90.03(8)° so that the Ti2Cl2 unit is nearly a perfect square. The BH4 groups are each tridentate, with a Ti-B distance of 2.220(9) Å and an average Ti-H distance of 1.98(5) Å. In Cp2Ti(B3H8), the B3H8 ligand is bidentate, as is usually seen, and the Ti-B and Ti-H distances are 2.600(3) and 1.96(2) Å. The dihedral angle between the Ti-B(1)-B(2) plane and the B(1)-B(2)-B(3) plane is 123.4°. The Ti-B distances are 0.04 Å longer than those in niobium analog, Cp2Nb(B3H8), despite the fact that the single bond metallic radius of Ti is 0.02 Å smaller than that of Nb. This lengthening of the bond is probably a consequence of the presence of one fewer skeletal bonding electron in Cp2Ti(B3H8).  相似文献   

9.
A new class of (CH2)n-bridged indenyl-pyrazoles [4-{Ind-(CH2)n}-RR′PzH] (Ind = 1H-inden-3-yl, n = 1-3, RR′Pz = 3,5-disubstituted pyrazolato) were synthesized. Reactions of the indenyl-functionalized pyrazoles with nickelocene in refluxing toluene afforded trimetallic and dimetallic cyclopentadienyl nickel(II) complexes, i.e., [CpNi{4-(Ind-(CH2)n)-RR′Pz}2]2Ni and [CpNi{4-(Ind-(CH2)n)-RR′Pz}]2, depending on the steric hindrance from the 3,5-disubstituents on the pyrazolato rings. In the CpNi(II) complexes, pyrazolato ligands exhibit μ-η11 coordination to the metal centers and the indenyl moieties demonstrate no interaction with the metals. All the indenyl-pyrazoles and their complexes were characterized by spectroscopic and analytical methods including X-ray crystallographic study.  相似文献   

10.
The compounds, Cd(BF4)(TaF6) and Cd(BF4)(BiF6), have been synthesized and characterized by single-crystal X-ray diffraction and Raman spectroscopy. Both isostructural compounds crystallize in the monoclinic P21/c space group with a = 8.2700(6) Å, b = 9.3691(6) Å, c = 8.8896(7) Å, β = 94.196(3)°, V = 686.94(9) Å3 for Cd(BF4)(TaF6) and a = 8.3412(8) Å, b = 9.4062(8) Å, c = 8.9570(7) Å, β = 93.320(5)°, V = 701.58(11) Å3 for Cd(BF4)(BiF6). Eight fluorine atoms (4 BF4 + 4 AF6) form a surrounding around the cadmium atom in the shape of distorted square antiprism. These compounds are not isostructural with mixed-anion analogues of Ca, Sr, Ba and Pb studied earlier.  相似文献   

11.
12.
The syntheses and characterisation of the Co(III) complexes [(L)Co(O2CO)]ClO4 (L = a tripodal tetraamine ligand = baep, abap, uns-penp, dppa, trpn) are reported. Geometric isomers are possible for all but the trpn complex, owing to the non-equivalence of the three arms on the tripodal ligand, and both NMR and X-ray crystallography are used to identify the single isomer formed. X-ray crystal structures of the complexes [(L)Co(O2CO)]ClO4 · xH2O (L = baep, x = 0.5; L = abap, x = 0; L = uns-penp, x = 1; L = dppa, x = 0; L = trpn, x = 1) are reported; little variation is observed in the geometry of the carbonate chelate ring while significant lengthening of bonds and expansion of angles involving the cobalt ion occurs as the number of six-membered chelate rings in the complex cations increases. 59Co NMR chemical shift data for the complexes show the expected linear relationship between λmax, the wavelength of the lowest energy dd transition, and γ, the magnetogyric ratio of the 59Co nucleus. An excellent correlation between Δ, the d orbital splitting parameter, and δ(59Co) also exists for these complexes. Rate data for the acid hydrolysis of [(L)Co(O2CO)]+ (L = uns-penp, dppa) in 1.0 M HClO4 differ by two orders of magnitude, and this is attributed to the differing steric accessibility of the endo O atoms in each complex. DFT calculations on the complexes reproduce the isomeric preferences, UV–Vis and 59Co NMR spectroscopic data well, provided that solvent effects are included.  相似文献   

13.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

14.
A hyphenated ion-pair (tetrabutylammonium chloride—TBACl) reversed phase (C18) HPLC-ICP-MS method (High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectroscopy) for anionic Rh(III) aqua chlorido-complexes present in an HCl matrix has been developed. Under optimum chromatographic conditions it was possible to separate and quantify cationic Rh(III) complexes (eluted as a single band), [RhCl3(H2O)3], cis-[RhCl4(H2O)2], trans-[RhCl4(H2O)2] and [RhCln(H2O)6−n]3−n (n = 5, 6) species. The [RhCln(H2O)6−n]3−n (n = 5, 6) complex anions eluted as a single band due to the relatively fast aquation of [RhCl6]3− in a 0.1 mol L−1 TBACl ionic strength mobile phase matrix. Moreover, the calculated t1/2 of 1.3 min for [RhCl6]3− aquation at 0.1 mol kg−1 HCl ionic strength is significantly lower than the reported t1/2 of 6.3 min at 4.0 mol kg−1 HClO4 ionic strength. Ionic strength or the activity of water in this context is a key parameter that determines whether [RhCln(H2O)6−n]3−n (n = 5, 6) species can be chromatographically separated. In addition, aquation/anation rate constants were determined for [RhCln(H2O)6−n]3−n (n = 3-6) complexes at low ionic strength (0.1 mol kg−1 HCl) by means of spectrophotometry and independently with the developed ion-pair HPLC-ICP-MS technique for species assignment validation. The Rh(III) samples that was equilibrated in differing HCl concentrations for 2.8 years at 298 K was analyzed with the ion-pair HPLC method. This analysis yielded a partial Rh(III) aqua chlorido-complex species distribution diagram as a function of HCl concentration. For the first time the distribution of the cis- and trans-[RhCl4(H2O)2] stereoisomers have been obtained. Furthermore, it was found that relatively large amounts of ‘highly’ aquated [RhCln(H2O)6−n]3−n (n = 0-4) species persist in up to 2.8 mol L−1 HCl and in 1.0 mol L−1 HCl the abundance of the [RhCl5(H2O)]2− species is only 8-10% of the total, far from the 70-80% as previously proposed. A 95% abundance of the [RhCl6]3− complex anion occurs only when the HCl concentration is above 6 mol L−1. The detection limit for a Rh(III) species eluted from the column is below 0.147 mg L−1.  相似文献   

15.
A new iron phosphate (NH4)4Fe3(OH)2F2[H3(PO4)4] has been synthesized hydrothermally at HF concentrations from 0.5 to 1.2 mL. Single-crystal X-ray diffraction analysis reveals its three-dimensional open-framework structure (monoclinic, space group P21/n (No. 14), a=6.2614(13) Å, b=9.844(2) Å, c=14.271(3) Å, β=92.11(1)°, V=879.0(3) Å3). This structure is built from isolated linear trimers of corner-sharing Fe(III) octahedra, which are linked by (PO4) groups to form ten-membered-ring channels along [1 0 0]. This isolated, linear trimer of corner-sharing Fe(III) octahedra, [(FeO4)3(OH)2F2], is new and adds to the diverse linkages of Fe polyhedra as secondary building units in iron phosphates. The trivalent iron at octahedral sites for the title compound has been confirmed by synchrotron Fe K-edge XANES spectra and magnetic measurements. Magnetic measurements also show that this compound exhibit a strong antiferromagnetic exchange below TN=17 K, consistent with superexchange interactions expected for the linear trimer of ferric octahedra with the Fe-F-Fe angle of 132.5°.  相似文献   

16.
A series of fourteen octahedral nickel(IV) dithiocarbamato complexes of the general formula [Ni(ndtc)3]X·yH2O {ndtc stands for the appropriate dithiocarbamate anion, X stands for ClO4 (1-8; y = 0) or [FeCl4] (9-14; y = 0 for 9-12, 1 for 13 and 0.5 for 14} was prepared by the oxidation of the corresponding nickel(II) complexes, i.e. [Ni(ndtc)2], with NOClO4 or FeCl3. The complexes, involving a high-valent NiIVS6 core, were characterized by elemental analysis (C, H, N, Cl and Ni), UV-Vis and FTIR spectroscopy, thermal analysis and magnetochemical and conductivity measurements. The X-ray structure of [Ni(hmidtc)3][FeCl4] (9) was determined {it consists of covalently discrete complex [Ni(hmidtc)3]+ cations and [FeCl4] anions} and this revealed slightly distorted octahedral and tetrahedral geometries within the complex cations, and anions, respectively. The Ni(IV) atom is six-coordinated by three bidentate S-donor hexamethyleneiminedithiocarbamate anions (hmidtc), with Ni-S bond lengths ranging from 2.2597(5) to 2.2652(5) Å, while the shortest Ni···Cl and Ni···Fe distances equal 4.1043(12), and 6.2862(6) Å, respectively. Moreover, the formal oxidation state of iron in [FeCl4] as well as the coordination geometry in its vicinity was also proved by 57Fe Mössbauer spectroscopy in the case of 9.  相似文献   

17.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

18.
The lanthanide sulphate octahydrates Ln2(SO4)3·8H2O (Ln=Ho, Tm) and the respective tetrahydrate Pr2(SO4)3·4H2O were obtained by evaporation of aqueous reaction mixtures of trivalent rare earth oxides and sulphuric acid at 300 K. Ln2(SO4)3·8H2O (Ln=Ho, Tm) crystallise in space group C2/c (Z=4, aHo=13.4421(4) Å, bHo=6.6745(2) Å, cHo=18.1642(5) Å, βHo=102.006(1) Å3 and aTm=13.4118(14) Å, bTm=6.6402(6) Å, cTm=18.1040(16) Å, βTm=101.980(8) Å3), Pr2(SO4)3·4H2O adopts space group P21/n (a=13.051(3) Å, b=7.2047(14) Å, c=13.316(3) Å, β=92.55(3) Å3). The vibrational and optical spectra of Ho2(SO4)3·8H2O and Pr2(SO4)3·4H2O are also reported.  相似文献   

19.
Using biprotonated dabco (1,4-diazabicyclo[2.2.2]octane) or pipz (piperazine) as counter cations, mixed-ligand fluoromanganates(III) with dimeric anions could be prepared from hydrofluoric acid solutions. The crystal structures were determined by X-ray diffraction on single crystals: dabcoH2[Mn2F8(H2O)2]·2H2O (1), space group P21, Z = 2, a = 6.944(1), b = 14.689(3), c = 7.307(1) Å, β = 93.75(3)°, R1 = 0.0240; pipzH2[Mn2F8(H2O)2]·2H2O (2), space group , Z = 2, a = 6.977(1), b = 8.760(2), c = 12.584(3) Å, α = 83.79(3), β = 74.25(3), γ = 71.20(3)°, R1 = 0.0451; (dabcoH2)2[Mn2F8(H2PO4)2] (3), space group P21/n, Z = 4, a = 9.3447(4), b = 12.5208(4), c = 9.7591(6) Å, β = 94.392(8)°, R1 = 0.0280. All three compounds show dimeric anions formed by [MnF5O] octahedra (O from oxo ligands) sharing a common edge, with strongly asymmetric double fluorine bridges. In contrast to analogous dimeric anions of Al or Fe(III), the oxo ligands (H2O (1,2) or phosphate (3)) are in equatorial trans-positions within the bridging plane. The strong pseudo-Jahn-Teller effect of octahedral Mn(III) complexes is documented in a huge elongation of an octahedral axis, namely that including the long bridging Mn-F bond and the Mn-O bond. In spite of different charge of the anion in the fluoride phosphate, the octahedral geometry is almost the same as in the aqua-fluoro compounds. The strong distortion is reflected also in the ligand field spectra.  相似文献   

20.
Nickel and copper complexes containing 1,3,5-benzenetricarboxylic acid, with a combination of selected N-donor ligands and Schiff bases, of the composition Ni3(bimz)6(btc)2 · 12H2O (1), Ni3(btz)9(btc)2 · 12H2O (2), Ni2(L1)(btc) · 7H2O (3), Ni3(L2)2(Hbtc) · 9H2O (4), Ni2(L3)(btc) · 4H2O (5), Cu2(L4)(btc) · 7H2O (6), [Cu3(pmdien)3(btc)](ClO4)3 · 6H2O (7) and [Cu3(mdpta)3(btc)](ClO4)3 · 4H2O (8); H3btc = 1,3,5-benzenetricarboxylic acid, bimz = benzimidazole, btz = 1,2,3-benztriazole, L1 = 2-[(phenylimino)methyl]phenol, L2 = N,N′-bis-(salicylidene)propylenediamine, L3 = 2-{[(2-nitrophenyl)methylene]amino}phenol, L4 = 2-[(4-methoxy-phenylimino)methyl]phenol, pmdien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, mdpta = N,N-bis-(3-aminopropyl)methylamine, have been synthesized. The complexes have been studied by elemental analysis, IR, UV–Vis spectroscopies, magnetochemical and conductivity measurements and selected compounds also by thermal analysis. The crystal and molecular structure of complex 8 was solved. The complex is trinuclear with btc3−-bridge. The coordination polyhedron around each copper atom can be described as a distorted square with a CuON3 chromophore formed by one oxygen atom of carboxylate and three nitrogen atoms of mdpta. The magnetic properties of 8 have been studied in the 1.8–300 K temperature range revealing a very weak antiferromagnetic exchange interaction with J = −0.56 cm−1 for g = 2.13(9). The antimicrobial activities against selected strains of bacteria were evaluated. It was found that only complex 5 is able to inhibit the growth of Staphylococcus strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号