首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six complexes, rubidium and cesium 3,5-dinitropyrid-2-onate (2DNPO), 3,5-dinitropyrid-4-onate (4NDPO), 3,5-dinitropyrid-4-one-N-hydroxylate (4DNPNO), were synthesized and characterized by elemental analysis, FT-IR, TG-DTG and X-ray single-crystal diffraction analysis. All the complexes crystallized from water and one of them was a hydrate. Rubidium 3,5-dinitropyrid-4-one-N-hydroxylate was crystallized with the 1?:?2 stoichiometry as Rb[H(4DNPNO)2] upon absorption of carbon dioxide. The structural determinations showed that the coordination sphere around a metal centre is made up of oxygen atoms and nitrogen atoms, except for the 4DNPNO complexes, where the coordination sphere accommodates exclusively oxygen atoms. The coordination numbers of the metal centers vary from 8, 10, 11 to 12, while the ligands, each employing its pyridone tautomer, link with metal cations. Bridging oxygen atoms play an important role in construction of two- and/or three-dimensional networks of these complexes. Hydrogen bonding contributes to the connectivity within a given sheet in Rb[H(4DNPNO)2]; aromatic π–π stacking interactions exist only in Cs(4DNPNO). The interactions between metal atoms and ligands are generally very weak. The organization of all layer structures appears to be governed mainly by steric effects and electrostatic forces with very little directional influence of the cations. The thermogravimetric analyses of these complexes showed the following consecutive processes: loss of NO2 groups, collapse of the pyridyl ring backbones and finally inorganic residue formation. These complexes could be used as probes in template effects of heavy alkali-metal cations in the organization of biorelevant ligands and as environment-friendly energetic catalysts in solid propellants.  相似文献   

2.
In an attempt to probe a potential template role of the large alkali-metal cations rubidium and cesium in the organization of biorelevant ligands, salicylate and anthranilate complexes of the two elements were prepared and structurally investigated. The studies were also expected to show the marked structural differences compared to the corresponding thallium(I) compounds. Rubidium anthranilate and cesium salicylate could be crystallized as the monohydrates Rb(Anth)(H(2)O) and Cs(Sal)(H(2)O). Both have layer structures containing the cations and the polar groups of the ligands in core domains sandwiched by the aromatic rings above and below. The metal atoms have coordination numbers 7 and 8, respectively, with an irregular coordination sphere made up exclusively of oxygen atoms. Crystalline material with a 1:2 stoichiometry, Cs[H(Anth)(2)], is obtained from aqueous solutions of Cs(Anth) upon absorption of carbon dioxide with concomitant formation of cesium bicarbonate, Cs(HCO(3)). The crystal structure of Cs(HCO(3)) was redetermined to obtain precise benchmark data for cesium carbonates and carboxylates. The cesium hydrogen bisanthranilate also has a layer structure with eight-coordinate cesium atoms. The coordination sphere includes one nitrogen donor atom. The organization of all layer structures appears to be governed mainly by steric effects and electrostatic forces with very little directional influence of the cations. This result suggests that the large alkali metals have no efficient template effect for the organization of biological substrates and can explain the low toxicity of rubidium and cesium salts.  相似文献   

3.
采用石墨炉原子吸收法检测氯化铯、天冬氨酸铯、3,5-二硝基水杨酸铯、5-氨基四唑铯的跨膜量,探讨有机铯化合物的跨膜机理以及阴阳离子间的相互作用对铯跨膜方式的影响。结果表明:铯化合物可通过多种方式跨膜,并具有动力学饱和特征;3,5-二硝基水杨酸铯、5-氨基四唑铯中有机阴离子的存在使铯很难以CsCO3-的形式依靠阴离子通道跨膜,NaHCO3的加入有利于天冬氨酸铯中铯的跨膜;Ca2+通道抑制剂硝苯地平在日光下的降解产物促进了氯化铯中Cs+的跨膜但抑制了其他铯化合物中Cs+的跨膜。  相似文献   

4.
《Polyhedron》2002,21(25-26):2555-2560
Complexes thallium(I)3-nitrophenoxide [Tl(3-np)], thallium(I)2,4-dinitrophenoxide [Tl(2,4-dnp)] and thallium(I)4-nitrobenzoate [Tl(4-nb)] have been synthesized using a direct reaction between TlNO3 and the appropriate ligand. The complexes have been isolated and characterized by IR spectra and CHN elemental analyses. The structures of [Tl(3-np)]n and [Tl(2,4-dnp)] have been confirmed by X-ray crystallography. The single crystal X-ray crystallography of [Tl(3-np)]n shows the complex to be a one-dimensional polymer as a result of bridging 3-nitrophenoxide ligands. The Tl atoms have an unsymmetrical three-coordinate, O3 geometry (three oxygen atoms of the 3-nitrophenoxide ligand). The crystal structure of [Tl(2,4-dnp)] shows the complex to be a three-dimensional polymer as a result of bridging 2,4-dinitrophenoxide ligands. The Tl atoms have an unsymmetrical two-coordinate, O2 geometry (two oxygen atoms of the 2,4-dinitrophenoxide ligand). The arrangement of the 3-nitrophenoxide and 2,4-dinitrophenoxide ligands suggests a gap in coordination geometry around the Tl(I) ions, occupied possibly by a stereoactive lone pair of electrons on Tl(I). There is a π–π stacking interaction between the parallel aromatic rings belonging to adjacent chains in the compounds that may help to increase the ‘gap’ in coordination geometry around the Tl(I) ions.  相似文献   

5.
A new hetero-bimetallic coordination polymer, cesium, and sodium complex of styphnate trihydrate [CsNa(TNR)(H2O)3] n (TNR: 2,4,6-trinitroresorcinol dianion, the dianion of styphnic acid) was synthesized. The title complex was characterized by X-ray single crystal diffraction, element analysis, FT-IR, DSC, TG-DTG studies. In the title polymer molecule, the cesium cation is coordinated by 13 oxygen atoms: three originated from the water molecule and the others are from the nitro group and the phenolic hydroxyl group of TNR; the sodium cation is surrounded by six oxygen atoms from water molecules and TNR forming a distorted octahedron. The coordination polymer crystal was formed by the bridging ligands of water molecules and TNR connected with different cesium and sodium cations.  相似文献   

6.
Abstract

Mn(II) cations in the crystals of trisaquobis(μ-thiophen-2-carboxylato-O,O′)(thiophen-2-carboxylato-O)manganese(II) monohydrate are bridged by oxygen atoms donated by bidentate carboxylic groups of two thiophen-2-carboxylate ligands. In addition, each Mn(II) ion is coordinated by an oxygen atom of a monodentate carboxylic group of this ligand and three oxygen atoms of water molecules. The coordination around the Mn(II) cation is octahedral. The bridging of the ligands results in molecular ribbons propagating in the c-direction of the crystal held together by C?H…O hydrogen bonds. The crystal structure of diaquobis(μ-furan-3-carboxylato-O,O′)di(μ-furan-3-carboxylato-O,O)(μ-aqua-O)manganese(II) consists of dinuclear structural units. In each molecule Mn(II) cations are O,O′ bridged by oxygen atoms of bidentate carboxylic groups of two furan-3-carboxylate ligands and have a water located between the Mn cations. The units are O,O′ bridged to Mn(II) ions located in adjacent units by bidentate oxygen atoms, forming molecular ribbons extending in the c-direction. Octahedral coordination around each Mn(II) ion is completed by two water molecules. The octahedra around two adjacent metal ions in the unit share a common apex - the bridging oxygen atom of the water molecule. The ribbons are held together by C?H…O hydrogen bonds between furan ring oxygen atoms and the carbon atoms of adjacent furan rings.  相似文献   

7.
Tetradentate N4-type organic ligands containing two 5-(2-pyridylmethylidene)-2-thio-3,5-dihydro-4H-imidazol-4-one fragments linked by two-, four-, or six-carbon polymethylene bridges between the sulfur atoms were synthesized. Mono- and dinuclear complexes of these ligands with copper(II) chloride, as well as with copper(I) and copper(II) perchlorates, were prepared. The structure of the coordination compound (5Z,5′Z)-2,2′-(butane-1,2-diyl-disulfanyldiyl)bis-5-(2-pyridylmethylidene)-3-phenyl-3,5-dihydro-4H-imidazol-4-one with copper(I) perchlorate was established by X-ray diffraction. The copper atom in this complex is in a distorted tetrahedral coordination formed by four nitrogen atoms of two imidazole and two pyridine rings. The perchlorate anion is located in the outer sphere of the complex and is not involved in the coordination with the copper ion. The electrochemical study of the ligands and the complexes was carried out by cyclic voltammetry and rotating disk electrode voltammetry. The initial reduction of the complexes under study occurs at the metal atom. The length of the polymethylene bridge in the ligand has only a slight effect on the redox properties of the ligands and the complexes.  相似文献   

8.
用水热法和溶液法分别合成了2个新的配合物{[Ag(4,4′-bpy)]·3-HSBA.H2O}n(1)和[Zn(phen)2(H2O)2]·(A-2,5-DSA)·3H2O(2)(3-HSBA=3-羧基苯磺酸根,A-2,5-DSA=苯氨-2,5-二磺酸根,4,4′-bpy=4,4′-联吡啶,phen=1,10-邻菲咯啉),用X-射线单晶衍射结构分析方法测定了其晶体结构。配合物1是一维链状结构。在1个不对称单元中包含1个[Ag(4,4′-bpy)]+阳离子,1个3-羧基苯磺酸根阴离子和1个晶格水分子。Ag髣离子与2个4,4′-联吡啶的2个氮原子配位。配合物2是单核结构。在1个不对称单元中包含1个[Zn(phen)2(H2O)2]2+阳离子,1个苯氨-2,5-二磺酸根阴离子和3个晶格水分子。Zn髤离子与2个1,10-邻菲咯啉的4个氮原子和2个水氧原子配位。配合物1和2中,配位阳离子、抗衡阴离子以及晶格水分子之间存在丰富的氢键,进而构筑成超分子网络结构。配合物的荧光均来自于配体的π-π*电子跃迁。  相似文献   

9.
The asymmetric unit of the title two‐dimensional coordination polymer, {[Cd(C14H8O4)(C14H14N4)]·0.15H2O}n, is composed of one CdII cation, one biphenyl‐2,4′‐dicarboxylate (bpdc) anion, one 1,4‐bis(imidazol‐1‐ylmethyl)benzene (bix) ligand and 0.15 solvent water molecules. The coordination environment of the CdII cation is defined by four carboxylate O atoms from two different bpdc anions in a chelating mode and two N atoms from two distinct bix ligands, constructing a distorted trigonal prism polyhedron. Two inversion‐related CdII cations are bridged together by two positionally disordered bpdc anions, forming a 22‐membered ring with a Cd...Cd distance of 9.1966 (9) Å. These rings are then further linked by two bix ligands, extending into a two‐dimensional layer along (102) with 63 topology.  相似文献   

10.
Ion pair receptor 3 bearing an anion binding site and multiple cation binding sites has been synthesized and shown to function in a novel binding-release cycle that does not necessarily require displacement to effect release. The receptor forms stable complexes with the test cesium salts, CsCl and CsNO(3), in solution (10% methanol-d(4) in chloroform-d) as inferred from (1)H NMR spectroscopic analyses. The addition of KClO(4) to these cesium salt complexes leads to a novel type of cation metathesis in which the "exchanged" cations occupy different binding sites. Specifically, K(+) becomes bound at the expense of the Cs(+) cation initially present in the complex. Under liquid-liquid conditions, receptor 3 is able to extract CsNO(3) and CsCl from an aqueous D(2)O layer into nitrobenzene-d(5) as inferred from (1)H NMR spectroscopic analyses and radiotracer measurements. The Cs(+) cation of the CsNO(3) extracted into the nitrobenzene phase by receptor 3 may be released into the aqueous phase by contacting the loaded nitrobenzene phase with an aqueous KClO(4) solution. Additional exposure of the nitrobenzene layer to chloroform and water gives 3 in its uncomplexed, ion-free form. This allows receptor 3 to be recovered for subsequent use. Support for the underlying complexation chemistry came from single-crystal X-ray diffraction analyses and gas-phase energy-minimization studies.  相似文献   

11.
A new complex of europium(II) with ethylenediaminetetraacetic acid was obtained by electrochemical reduction. The compound is composed of polymeric chains, guanidinium cations and water molecules. The Eu2+ cation is eight‐coordinate (two nitrogen atoms and six carboxylate oxygen atoms), and contrary to europium(III) complexes with edta, does not contain water molecules in the first coordination sphere. Relationships between the coordination mode and IR as well as UV–Vis spectra are discussed.  相似文献   

12.
The structures of a series of substituted benzothiacrown compounds containing the dithia-15-crown-5, dithia-18-crown-6, or monothia-15-crown-5 fragment and their complexes with Ag+ and Pb2+ ions were studied by X-ray diffraction. In free benzothiacrown compounds, the sulfur atoms are preferably located outside the macrocyclic cavity, and their lone electron pairs (LEPs) point away from the center of the macrocycle, which is unfavorable for the formation of inclusion complexes. Flexible macrocyclic fragments can change their conformations in accord with the coordination requirements of heavy metal cations. As a result, benzothiacrown compounds involved in complexes adopt a crown conformation, in which LEPs of all hetero-atoms point toward the cation. The sulfur atoms are involved in coordination of Ag+ to a greater degree than the oxygen atoms due to high affinity of soft sulfur atoms for silver cations. On the contrary, the sulfur and oxygen atoms are involved to approximately the same degree in coordination of Pb2+ ions. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 967–976, May, 2007.  相似文献   

13.
Polyaza-polyoxa macrobicyclic ligands: its synthesis and metal complexes. The synthesis of the polyaza-polyoxa macrobicyclic ligands 1–4 is described. They form complexes with a variety of metal cations, transition metal cations as well as alkali and alkaline-earth cations. These complexes may be formulated as cation inclusion complexes, cryptates, in which the cation is contained in the intramolecular cavity. The properties of the complexes are described. An especially interesting feature is that these ligands, polymines of macrobicyclic topology, provide a means of trapping transition metal cations inside a molecular cavity; thus they impose coordination geometries and may modify the spectral and redox properties of the cations.  相似文献   

14.
A series of 14 new metal-organic compounds of Ag(I) and Zn(II), i.e. trichloro(1-(2-hydroxyethyl)piperazinium)zinc(II) (1), 1-[2-(2-hydroxyethoxy)-ethyl]-piperazinium tetrachlorozincate(II) (2), tetrachlorozincate(II) salt of 4-(2-aminoethyl)morpholine (3), 1,4-bis(2-hydroxyethyl)piperazinium tetrachlorozincate(II) (4), 5-sulfosalicylate coordination polymer of Ag(I) (5) [3dd], mandelate coordination polymer of Ag(I) (6) [1r], hexa-aqua zinc(II) 5-sulfosalicylate monohydrate (7), cyclic quaternary N-ethylmorpholine tetrachlorozincate(II) monohydrate (8), 2,2′:6′,2″-terpyridinium tetrachlorozincate(II) (9), bis(guaninium) tetrachlorozincate(II) dihydrate (10), bis(8-hydroxyquinolinium) tetrachlorozincate(II) (11), zinc(II) complexes of 2,4-dihydroxy-(12) and 2,3-dihydroxy-(13) benzoic acid, silver(I) complex of 2,4-dihydroxybenzoic acid (14), as well as cyclic quaternary N-ethylmorpholine chloride monohydrate (8a), are synthesized, isolated spectroscopic and structurally characterized by the mass spectrometry, electronic absorption and vibrational spectroscopy, diffuse reflectance and fluorescence spectroscopy in condense phases, single crystal X-ray diffraction, ICP and thermal methods. Quantum chemical DFT calculations, including NBO analysis are performed for all of the obtained complexes, their ligands as well as series of structurally related model metal-organic chromophores. The obtained correlation dependences between the theoretical and experimental structural and spectroscopic data both in gas- and condense phases, underlying an explanation of the experimentally observed mass spectrometrically stable metal-organic species in the gas phase as well as the atypical CT bands in excited state.  相似文献   

15.
The crystal and molecular structure of [Cu(nif)2(4-PM)2]·CH3OH (1) and [Cu(2-Clbz)2(4-PM)2(H2O)] (2), (where nif = niflumate anion, 2-Clbz = 2-chlorobenzoate anion and 4-PM is the 4-pyridylmethanol), have been determinated by X-ray crystallography. The Cu2+ cation in (1), is coordinated by two pairs of oxygen atoms from asymmetric bidentate niflumate anions and by a pair of pyridine nitrogen atoms from monodentate 4-pyridylmethanol ligands in trans position forming an extremely elongated bipyramid. The Cu2+ cation in (2), is coordinated by a pair of oxygen atoms from monodentate 2-chlorobenzoate anions, further by a pair of pyridine nitrogen atoms from monodentate 4-pyridylmethanol ligands and finally by a water oxygen atom forming a tetragonal-pyramidal coordination polyhedron. The molecules of both complexes in crystal structures are linked by O-H…O hydrogen bonds, which created a three-dimensional hydrogen-bonding networks. The Π-Π stacking interactions are also observed in crystal structures of complex 2. The spectral properties (IR and electronic spectra) of both complexes were also investigated.  相似文献   

16.
Compartmentalized molecular level design of new energetic materials based on energetic azolate anions allows for the examination of the effects of both cation and anion on the physiochemical properties of ionic liquids. Thirty one novel salts were synthesized by pairing diverse cations (tetraphenylphosphonium, ethyltriphenylphosphonium, N‐phenyl pyridinium, 1‐butyl‐3‐methylimidazolium, tetramethyl‐, tetraethyl‐, and tetrabutylammonium) with azolate anions (5‐nitrobenzimidazolate, 5‐nitrobenzotriazolate, 3,5‐dinitro‐1,2,4‐triazolate, 2,4‐dinitroimidazolate, 4‐nitro‐1,2,3‐triazolate, 4,5‐dinitroimidazolate, 4,5‐dicyanoimidazolate, 4‐nitroimidazolate, and tetrazolate). These salts have been characterized by DSC, TGA, and single crystal X‐ray crystallography. The azolates in general are surprisingly stable in the systems explored. Ionic liquids were obtained with all combinations of the 1‐butyl‐3‐methylimidazolium cation and the heterocyclic azolate anions studied, and with several combinations of tetraethyl‐ or tetrabutylammonium cations and the azolate anions. Favorable structure–property relationships were most often achieved when changing from 4‐ and 4,5‐disubstituted anions to 3,5‐ and 2,4‐disubstituted anions. The most promising anion for use in energetic ionic liquids of those studied here, was 3,5‐dinitro‐1,2,4‐triazolate, based on its contributions to the entire set of target properties.  相似文献   

17.
用水热法合成了两种新的配合物[Cd2(e,e-trans-chdc)2(bipy)2(H2O)2].H2O(1)和[Mn2(e,a-cis-chdc)2(phen)2(H2O)2].2H2O(2)(chdc=1,2-环己二羧酸,bipy=2,2′-联吡啶和phen=1,10-邻菲咯啉),用X-射线单晶衍射分析确定了配合物的晶体结构。配合物1和2均为双核分子。配合物1中,2个镉髤离子由2个1,2-环己二羧酸根以e,e-trans配位方式桥联,每个镉髤离子与1个2,2′-联吡啶的2个氮原子、2个1,2-环己二羧酸根的4个氧原子及1个水分子中的氧原子配位,形成了单帽变形三棱柱构型。配合物2中,2个锰髤离子由2个1,2-环己二羧酸根以e,a-cis配位方式桥联,每个锰髤离子与1个1,10-邻菲咯啉的2个氮原子、2个1,2-环己二羧酸根的3个氧原子及1个水分子中的氧原子配位,形成了畸变的八面体构型。配合物1和2分子之间都存在π-π堆积和O-H…O、C-H…O弱作用,进而将双核分子连接成三维超分子网络结构。配合物的荧光均来自于配体的荧光。  相似文献   

18.
The coordination chemistry of a tetradentate redox-active ligand, glyoxal-bis(2-hydroxy-3,5-di-tert-butylanil) (H(2)L), was investigated with the diorganotin(iv) and diphenyllead(iv) moieties. Complexes R(2)SnL (R = Me (), Et (), (t)Bu (), Ph ()) and Ph(2)PbL () have been prepared and characterized. The molecular structures of compounds , and have been determined by single crystal X-ray diffraction. The diamagnetic octahedral complexes bear a tetradentate O,N,N,O redox-active ligand with a nearly planar core. Complexes demonstrate solvatochromism in solution. The CV of complexes reveals four one-electron redox processes. The spin density distribution in the chemically generated cations and anions of was studied by X-band EPR spectroscopy. The experimental data agree well with the results of DFT calculations of electronic structures for , its pyridine adduct ·Py, cation and anion .  相似文献   

19.
ZnCl2, PhONa和Et4NCl稨2O在乙腈溶剂中反应合成了一种二核锌配合物[Et4N]2[Zn2(OPh)2Cl4]。X射线衍射结果表明,晶体属单斜晶系,C2/m空间群,晶胞参数 a = 14.1366(2), b=13.6985(5), c=9.3308(3)牛?107.851(2)o, V=1719.92(9)?,C28H50O2N2Zn2Cl4,Mr=721.24,Z=2,Dx=1.393g/cm3,μ(MoKα)=1.732mm—1,F(000)=756, R=0.0552, wR=0.1534, S=1.027。 配合物是由2个阳离子Et4N+和1个阴离子[Zn2(OPh)2Cl4]2—组成。阴离子[Zn2(OPh)2Cl4]2—包含着1个中心Zn2O2菱形平面。配合物中的2个锌原子通过2个苯酚中的氧原子桥连,每个锌原子还与2个氯原子配位形成变形四面体结构。  相似文献   

20.
由水热法合成了2个配合物[Co(1,2,4-HBTC)(tib)](1)和[Ni4(1,2,4-BTC)2(tib)4(H2O)2]·(1,2,4-HBTC).9H2O(2)(1,2,4-H3BTC=1,2,4-苯三甲酸,tib=1,3,5-三(1-咪唑基)苯),并用元素分析、红外光谱、X-射线单晶衍射及热重分析等对其进行了表征。晶体结构分析结果表明:配合物1是由Co(Ⅱ)和tib连接形成的二维层状结构,1,2,4-HBTC2-作为端基配体与Co(Ⅱ)配位,而配合物2是通过1,2,4-BTC3-连接[Ni(tib)]2+二维网形成最终的二维多层结构,这2个化合物最终均被氢键连接形成三维超分子结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号