首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   

2.
As in transition metal complexes, CN-R ligands adsorbed on powdered gold undergo attack by amines to give putative diaminocarbene groups on the gold surface. This reaction forms the basis for the discovery of a gold metal-catalyzed reaction of CN-R, primary amines (R′NH2) and O2 to give carbodiimides (R′-NCN-R). An analogous reaction of CO, RNH2, and O2 gives isocyanates (R-NCO), which react with additional amine to give urea (RNH)2CO products. The gold-catalyzed reaction of CN-R with secondary amines (HNR′2) and O2 gives mixed ureas RNH(CO)NR′2. In another type of gold-catalyzed reaction, secondary amines HN(CH2R)2 react with O2 to undergo dehydrogenation to the imine product, RCHN(CH2R). Of special interest is the high catalytic activity of gold powder, which is otherwise well-known for its poor catalytic properties.  相似文献   

3.
In contrast to the usual formal [2+2]-cycloaddition reaction, (NC)2CC{CC(SiPri3)}2, containing bulky alkynyl substituents, reacts with Ru(CCPh)(PPh3)2Cp to give the unprecedented cyclobutenylidene complex Ru{C(CN)2C[CC(SiPri3)]CC(SiPri3)CPhC}(PPh3)Cp, formed by addition of one of the CC(SiPri3) groups to the Ru-CCPh moiety and subsequent electronic reorganisation.  相似文献   

4.
Addition of [I(py)2]BF4 to Ru(CCH)(dppe)Cp∗ gave the iodovinylidene [Ru(CCHI)(dppe)Cp∗]BF41, which could be deprotonated to Ru(CCI)(dppe)Cp∗ 2. The attempted preparation of Ru(CCCCI)(dppe)Cp∗, followed by derivatisation with tcne, gave the dienynyl Ru{CCC[C(CN)2]CIC(CN)2}(dppe)Cp∗ 3. The Pd(0)/Cu(I)-catalysed reaction of 3 with Ru{CCCCAu(PPh3)}(dppe)Cp∗ afforded Ru{CCCC(CN)2CC(CN)2Au(PPh3)}(dppe)Cp∗ 4 by formal replacement of I+ by [Au(PPh3)]+. XRD structures of 1-4 are reported.  相似文献   

5.
Copper-catalyzed reaction of [Cp(PPh3)NiCl] with the terminal alkynes H-CC-C(O)R (R = O-Menthyl, NMe2, Ph) yields the alkynyl complexes [Cp(PPh3)Ni-CC-C(O)R]. Subsequent O-methylation with either [Me3O]BF4 or MeSO3CF3 affords cationic allenylidene complexes, [Cp(PPh3)NiCCC(OMe)R]+X¯ (X = BF4, SO3CF3). N-Alkylation of Cp(PPh3)Ni-pyridylethynyl complexes likewise gives cationic allenylidene complexes. [Cp(PPh3)Ni-CC-C(CH)4N] adds BF3 at nitrogen. Modification of the ligand sphere in these nickel allenylidene complexes is possible by replacing PPh3 by PMe3 in the alkynyl complex precursors. The first allenylidene(carbene)nickel cation, [Cp(SIMes)NCCC(OMe)NMe2]+, is accessible by successive reaction of [Cp(SIMes)NiCl] with H-CC-C(O)NMe2 and [Me3O]BF4. By the analogous sequence an allenylidene complex containing the chelating (diphenylphosphanyl)ethylcyclopentadienyl ligand can be prepared. DFT Calculations were carried out on the allenylidene complex cation [Cp(PPh3)NiCCC(OMe)NMe2]+ and on its precursor, the alkynyl complex [Cp(PPh3)Ni-CC-C(O)NMe2]. Based on the spectroscopic data and a X-ray structure analysis the bonding in the new nickel allenylidene complexes is best represented by several resonance forms, an alkynyl resonance form considerably contributing to the overall bond.  相似文献   

6.
The new ferrole Fe2(CO)6[μ-η24-(Fc)CC{C(H)C(R)S}CC(SiMe3)] [R = SiMe3 (1) and R = Fc (2)] and ruthenoles Ru2(CO)6[μ-η24-(Me3Si)CC{SC(Fc)C(H)}CC(Fc)] 3 and Ru2(CO)6[μ-η24-(Me3Si)CC(SCCFc)C(H)C(Fc)] 4, have been obtained from the reactions of M3(CO)12 (M = Fe, Ru) and FcCCSCCSiMe3 through S-C bond activations and C-C coupling reactions. Thermolysis of Ru2(CO)63243-(Me3Si)CC{SC(Fc)C(SCCSiMe3}Ru(CO)3}CC(Fc)] alone and in the presence of HCCFc, yielded the compounds Ru2(CO)6[μ-η24-(Me3Si)CC{SC(Fc)C(SCCSiMe3)}CC(Fc)] 5 and Ru2(CO)6[μ-η24-(Me3Si)CC{SC(Fc)C(SCCSiMe3)C(H)C(Fc)}CC(Fc)] 6, respectively. The crystal structures of the compounds 1, 3, 4 and 6 are reported.  相似文献   

7.
The preparation and characterisation of a diphosphaalkene, (Me3Si)PC(OSiMe3){C(C2H4)3C}C(OSiMe3)P(SiMe3), and the second example of a diphosphaalkyne, PC{C(C2H4)3C}CP, are described. In addition, the reaction of another diphosphaalkyne, PC{C(C6H4)3C}CP, with MeLi/LiBr in the presence of tmeda has given the first diphosphavinyl lithium complex, [MePC{Li2Br(tmeda)2}{C(C6H4)3C}C{Li2Br(tmeda)2}PMe], which is stable at room temperature and has been crystallographically characterised.  相似文献   

8.
The reactions of the alkenes with supercritical organic compounds under non-catalytic conditions were investigated. The H and CR2OH, CH2COCH3 or CH2CN of supercritical alcohols (CHR2OH), acetone (CH3COCH3) or acetonitrile (CH3CN) added to the CC bonds of alkenes form C-C bonds between the α-carbons of the supercritical organic compounds and the sp2 carbons of the alkenes.  相似文献   

9.
The compounds Ru(CCCCFc)(PP)Cp [PP = dppe (1), dppm (2)], have been obtained from reactions between RuCl(PP)Cp and FcCCCCSiMe3 in the presence of KF (1) or HCCCCFc and K[PF6] (2), both with added dbu. The dppe complex reacts with Co2(CO)6(L2) [L2 = (CO)2, dppm] to give 3, 4 in which the Co2(CO)4(L2) group is attached to the outer CC triple bond. The PPh3 analogue of 3 (5) has also been characterised. In contrast, tetracyanoethene reacts to give two isomeric complexes 6 and 7, in which the cyano-olefin has added to either CC triple bond. The reaction of RuCl(dppe)Cp with HCCCCFc, carried out in a thf/NEt3 mixture in the presence of Na[BPh4], gave [Ru{CCC(NEt3)CHFc}(dppe)Cp]BPh4 (8), probably formed by addition of the amine to an (unobserved) intermediate butatrienylidene [Ru(CCCCHFc)(dppe)Cp]+. The reaction of I2 with 8 proceeds via an unusual migration of the alkynyl group to the Cp ring to give [RuI(dppe){η-C5H4CCC(NEt3)CHFc}]I3 (9). Single-crystal X-ray structural determinations of 1, 2 and 4-9 are reported.  相似文献   

10.
Reactions of {(Ph3P)AuCC}2CC{CCAu(PPh3)}2 (1b), with Co3(μ-CBr)(μ-dppm)n(CO)9−2n (n = 0, 1) result in complete or partial elimination of AuBr(PPh3) to give the complexes {(OC)9Co33-CCC}2CC{CC-μ3-CCo3(CO)9}2 (3), trans-{(OC)7(μ-dppm)Co33-CCC}(HCC)CC{CCAu(PPh3)}{CC-μ3-CCo3(μ-dppm)(CO)7} (4), {(OC)7(μ-dppm)Co33-CCC}2CC(CCH){CC-μ3-CCo3(μ-dppm)(CO)7} (5) and {(OC)7(μ-dppm)Co33-CCC}2CC{CCAu(PPh3)}{CC-μ3-CCo3(μ-dppm)(CO)7} (6), which have been identified by spectroscopic methods and in the cases of 3, 4 and 5, by single-crystal X-ray diffraction methods.  相似文献   

11.
The alkenylaminoallenylidene complex [Ru(η5-C9H7){CCC(NEt2)[C(Me)CPh2]}{κ(P)-Ph2PCH2CHCH2}(PPh3)][PF6] (2) has been prepared by the reaction of the allenylidene [Ru(η5-C9H7)(CCCPh2){κ(P)-Ph2PCH2CHCH2}(PPh3)][PF6] (1) with the ynamine MeCCNEt2. The reaction proceeds regio- and stereoselectively, and the insertion of the ynamine takes place exclusively at the CβCγ bond of the unsaturated chain. The secondary allenylidene [Ru(η5-C9H7){CCC(H)[C(Me)CPh2]}{κ(P)-Ph2PCH2CHCH2}(PPh3)][PF6] (3) is obtained, in a one-pot synthesis, from the reaction of aminoallenylidene 2 with LiBHEt3 and subsequent treatment with silica. Moreover, the addition of an excess of NaBH4 to a solution of the complex 2 in THF at room temperature gives exclusively the alkynyl complex [Ru(η5-C9H7){CCCH2[C(Me)CPh2]}{κ(P)-Ph2PCH2CHCH2}(PPh3)] (5). The heating of a solution of allenylidene derivative 3 in THF at reflux gives regio- and diastereoselectively the cyclobutylidene complex [Ru(η5-C9H7) (PPh3)][PF6](4) through an intramolecular cycloaddition of the CC allyl and the CαCβ bonds in the allenylidene complex 3. The structure of complex 4 has been determined by single crystal X-ray diffraction analysis.  相似文献   

12.
A number of quantum chemical and density functional methods have been used to study the chemo- and regioselectivity of the uncatalysed and Lewis acid mediated cycloaddition of the nitrone PhCHN(Me)O with the CC or the CN bond of (E)-cinnamonitrile. In agreement with experimental evidence, Lewis acid coordination to the nitrile strongly promotes reaction at the CN bond over reaction at the alkene moiety. The main factors responsible for this inversion of the chemoselectivity were identified as the following: (i) the Lewis acid strongly stabilises the product of CN addition and the transition state leading to it, thus favouring this reaction both kinetically and thermodynamically. Addition across the CC bond, in contrast, only receives weak kinetic activation; (ii) the cycloaddition to the CC or CN bonds involves different molecular orbitals at the cinnamonitrile, and the Lewis acid influences the orbital involved in CN addition to a larger extent; (iii) the Lewis acid has a stronger effect on the electron distribution of the CN bond. As an overall result, the Lewis acid not only promotes the cycloaddition, but also alters the order of functional group reactivity and brings about a complete change in chemoselectivity.  相似文献   

13.
Reaction of cis-[RuCl2(dppm)2] (dppm = 1,2-bis(diphenylphosphino)methane) with PhCCH and NaPF6 utilising methanol as solvent results in the formation of the η3-butenynyl complex [Ru(η3-PhCCCCHPh)(dppm)2][PF6] in good yield. Similar reactions with ButCCH and PrnCCH resulted in the corresponding alkyl-substituted complexes and all three of these compounds have been characterised by NMR spectroscopy and X-ray crystallography. The mechanism of this reaction has been probed by employing labelling experiments with both PhCCD and PhC13CH allowing the identity of possible intermediates in the reaction to be determined. Furthermore, [Ru(η3-PhCCCCHPh)(dppm)2][PF6] has been shown to be an effective regio- and stereo-selective catalyst for the dimerisation of PhCCH to Z-PhCCCHCHPh in the absence of solvent. In contrast, no evidence for the formation of alkyne coupling was obtained from the reaction of cis-[RuCl2(dppe)2] (dppe = 1,2-bis(diphenylphosphino)ethane) with PhCCH and NaPF6.  相似文献   

14.
The oxidation of the Pt(IV) tetramethyl complex [ArNCHCHNAr]PtMe4 (Ar = 2,6-Me2C6H3) has been investigated in acetonitrile and dichloromethane. Cyclic voltammetry demonstrates that the irreversible oxidation of [ArNCHCHNAr]PtMe4 occurs at a slightly less positive oxidation potential than the irreversible oxidation of the analogous Pt(II) species [ArNCHCHNAr]PtMe2. The product distribution arising from the oxidation depends strongly on the reaction conditions and includes cationic Pt(IV) species (acetonitrile, dichloromethane solvents) and Pt(II) species (dichloromethane only). Evidence is presented that suggests that homolytic cleavage of a weakened PtC bond in is involved in the oxidatively induced reactions.  相似文献   

15.
16.
In contrast to the simple diynyl complexes formed in reactions between HCCCCFc and MCl(dppe)Cp∗; (M = Fe, Ru), an analogous reaction with RuCl(PPh3)2Cp∗; in the presence of KPF6 and dbu resulted in dimerisation of the diyne at the Ru centre to afford a mixture of [Ru{η12-C(CCFc)C(L)CHCCCHFc}(PPh3)Cp∗]PF6 (L = dbu 1, PPh32). Similar reactions with RuCl(PR3)2L gave [Ru{η12-C(CCFc)C(dbu)CHCCCHFc}(PR3)L]PF6 (L = Cp, R = Ph 3, m-tol 4; L = η5-C9H7, R = Ph 5). The reaction between 3 and I2, followed by crystallization of the paramagnetic product from MeOH, afforded the dicationic [Ru{C(CCFc)C(dbu)CHC(OMe)C(OMe)CHFc}(PPh3)Cp](I3)26. The molecular structures of 2·2CH2Cl2 and 6.S (S = 2CH2Cl2, C6H6) were determined by single-crystal XRD studies.  相似文献   

17.
18.
The Perkow reaction of triethyl phosphite and β-alkoxyvinyl trihalogenomethyl ketones, which have common acyclic or cyclic structural fragment: -O-CC-C(O)CX2Cl, yielded dienyl phosphates: -O-CC-C[OP(O)(OEt)2]CX2 where X = F or Cl, whereas γ-bromo-β-methoxy-α,β-unsaturated trifluoromethyl ketone CF3C(O)CHC(OMe)CH2Br gave diene CF3C[OP(O)(OEt)2]CH-C(OMe)CH2.  相似文献   

19.
Dechlorofluorination of ArSb(F)-C(Cl)CR2 (CR2 = fluorenylidene, Ar = 2,4,6-tri-tert-butylphenyl) by tert-butyllithium afforded a 3,4-bis(fluorenylidene)-1,2-distibacyclobutane. The formation of the latter probably involves the transient stibaallene ArSbCCR2 followed by a head-to-head dimerization via two SbC double bonds. Molecular orbital calculations at the ab initio and DFT levels support the head-to-head dimerization of ArSbCCR2 with the formation of a 1,2-distibacyclobutane.  相似文献   

20.
A representative series of (organoethynyl)difluoroboranes RCCBF2 (RC4H9, (CH3)3C, CF3, C3F7, (CF3)2CF, CF3CFCF, C4F9CFCF, C6F5) was prepared by abstraction of fluoride from the corresponding K[RCCBF3] salts with BF3 in appropriate solvents (1,1,1,3,3-pentafluoropropane, 1,1,1,3,3-pentafluorobutane, or dichloromethane).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号