首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ramendra Pratap  Vishnu Ji Ram 《Tetrahedron》2007,63(41):10309-10319
An efficient and versatile synthesis of various congested pyridines 3a-h, 6a,b, 8a-n, 10a-g, and 16a,b, and (pyrimidin-4-yl)acetonitriles 13a-g has been delineated by base catalyzed ring transformation of suitably functionalized 2H-pyran-2-ones 1a-h, 5, 7, and 15 by formamidine acetate 2a, acetamidine hydrochloride 2b, S-methylisothiourea 9a, pyrazol-1-yl-carboxamidine 9b, and arylamidine hydrochloride 12 separately in the presence of powdered KOH in dry DMF.  相似文献   

2.
Thermolysis of substituted methyl 1-methyleneamino-4,5-dioxo-4,5-dihydro-1H-pyrrole-2-carboxylates 2a,b led to substituted dimethyl 3,9-dioxo-1,5,7,11-tetrahydro-1H,7H-dipyrazolo[1,2-a;1′,2′-d][1,2,4,5]tetrazine-1,7-dicarboxylates 4a,b and methyl 2,5-dihydro-5-oxo-1H-pyrazole-3-carboxylates 5a,b as minor products. The structure of compound 4a was determined by X-ray crystallography. The proposed mechanism of this conversion includes generation of (N-methyleneamino)imidoylketenes 6a,b and its intramolecular transformation to azomethine imines—5-oxo-2,5-dihydropyrazole-1-methylium-2-ides 7a,b, which undergo dimerization in head-to-tail manner yielding products 4a,b and partially hydrolyse to compounds 5a,b.  相似文献   

3.
1-Boraadamantane (1) and 2-ethyl-1-boraadamantane (1(2-Et)) react with bis(trialkylstannyl)ethynes (3), R3Sn-CC-SnR3 with R=Me (a), Et (b), in a 1:1 molar ratio by 1,1-organoboration under very mild conditions to give the 4-methylene-3-borahomoadamantane derivatives 4a,b and 7a,b, respectively, which are dynamic at room temperature with respect to deorganoboration. The compounds 4a,b react further with 3a,b by 1,1-organoboration to the tricyclic butadiene derivatives 5a,b. Attempts to crystallise 4a afforded the product of hydrolysis, the diboroxane 6a which was characterised by X-ray structural analysis. All products were characterised in solution by 1H-, 11B-, 13C- and 119Sn-NMR spectroscopy.  相似文献   

4.
Ashraf A Abbas 《Tetrahedron》2004,60(7):1541-1548
The 13-hydroxy macrocycles 7a-d were prepared in 40-50% yields by the condensation of 1,ω-bis(4-amino-1,2,4-triazol-3-ylsulfany)alkanes 2a-d with 1,3-bis(2-formyphenoxy)-2-propanol (9). Acylation of 7a-d with 2-chloroacetylchloride gave the corresponding esters 11a,b. Amination of 11a,b with different amines in acetone furnished exclusively the target lariat macrocycles 12a,b and 13 in 60-70% yields. Reaction of 2 equiv. of the macrocycles 11a,b with 1 equiv. of piperazine afforded the novel bis macrocyles 14a,b in 50-60% yields. Reduction of 7a-d with NaBH4 afforded the corresponding 13-hydroxyazathia crown ethers 15a-d in 65-70% yields.  相似文献   

5.
By oxidation of 3-thioderivatives of 1,2,4-triazine 1a,b 3-alkylsulfonic derivatives 2a,b were obtained. Interaction of the sulfonic derivative 2a with indole leads to 3-oxo-5-indolyl-5-phenyl-as-triazine 4. The sulfone 2a reacts with 1-ethyl-2,6-dimethylquinolinium iodide to give 3-(1-ethyl-6-methyl-1,2-dihydroquinoline-2-methylene)-5-phenyl-1,2,4-triazine 5. The 3-morpholino- 3 and 3-thioderivatives 6, 7a,b of as-triazine were obtained by interaction of the sulfone 2 with morpholine and organic boron-containing thiols. The crystal structure of boron-containing derivative of as-triazine 7b was investigated by X-ray analysis.  相似文献   

6.
The cationic complexes [(η6-arene)Ru(N,O-amino amide)X]Y (arene = p-cymene or indane; N,O-amino amide = (l)-proline amide or (l)-phenylalanine amide; X = Cl or I; Y = Cl, I or PF6) have been synthesised and fully characterized by spectroscopic and analytical methods. In several cases (1a, 3a, 4a, 4b, 5) the metal configuration has been definitively established by X-ray analysis on single crystal. The lability of the metal center in solution has been studied by 1H NMR and CD techniques. The highest configurational stability has been found in the complexes of the type [(η6-indane)Ru(N,O-proline amide)Cl]Y (4a,b). The complexes 1b, 2a-b, 3b, 4b and 5 are good precatalysts for the transfer hydrogenation of acetophenone in basic i-PrOH, with ee up to 76% at 30 °C. An ESI(+)-MS study of pre-catalytic solutions has provided useful information on the catalytic mechanism.  相似文献   

7.
Kapildev K. Arora 《Tetrahedron》2005,61(45):10793-10800
Synthesis and characterization of molecular assemblies of pyridine adducts, 1a, 2a and 3a, of 3,5-dinitrobenzoic acid, 1, 3,5-dinitrobenzamide, 2 and 3,5-dinitrobenzonitrile, 3, respectively, have been reported. All these adducts were obtained by crystallization of 1, 2 and 3 from pyridine. However, crystallization of 1 from pyridine in the presence of benzene resulted in the formation of a pyridinium adduct, 1b, along with a water molecule. All the adducts crystallize in a 1:1 molecular ratio except 1a, which forms a 1:2 adduct, as characterized by single crystal X-ray diffraction method. The adducts crystallize in different space groups—1a, orthorhombic, Pna21; 1b, monoclinic, P21; 2a, monoclinc, C2/c; 3a, triclinic, . In two-dimensional arrangement, 1a, 1b and 3a form sheet structures. In 1a, within the two-dimensional sheets, large cavities are formed, which are occupied by pyridine molecules. In 1b, the sheets are catenated to form a chicken-wire network. However, 2a formed a crossed ribbon packing pattern with empty channels in the three-dimensional structure.  相似文献   

8.
Palladium catalyzed cross-coupling of 3-amino- and 3-acylamido-2-bromopyridines 1a-f with triethyl phosphite allowed the synthesis of 3-amino- and 3-acylamido pyridine-2-phosphonic acid diethyl esters 2a-f, whereas nickel catalysts, although providing access to related anilido-2-phosphonates, proved inactive. Reduction of the aminophosphonate 2a with LiAlH4 afforded 3-amino-2-phosphinopyridine (3a), which was cyclocondensed with dimethylformamide dimethyl acetal (DMFA) via phosphaalkene intermediates 4a to the novel pyrido[b]-anellated 1,3-azaphosphole 5a. Reaction of amidophosphonates 2b-f with LiAlH4 did not result in the expected reductive cyclization, as shown by closely related anilido-2-phosphonates, but led to product mixtures containing N-secondary 3-amino-2-phosphinopyridines 3b-f as the main or major component. The conversion of 3b,d,e with DMFA to 5b,d,e provides first examples of N-substituted pyrido[b]-anellated azaphospholes. Structures were confirmed by multinuclear NMR and X-ray crystallography (for 2c, 3b).  相似文献   

9.
A series of 2-(1-isopropyl-2-benzimidazolyl)-6-(1-aryliminoethyl)pyridyl metal complexes [iron (II) (1a-6a), cobalt (II) (1b-6b) and nickel (II) (1c-6c)] were synthesized and fully characterized by elemental and spectroscopic analyses. Single-crystal X-ray diffraction analyses of five coordinated complexes 5a, 3b, 5b, 1c and 2c reveal 5a and 5b as distorted trigonal-bipyramidal geometry, and 3b, 1c and 2c as distorted square pyramidal geometry. All complexes performed ethylene reactivity with the assistance of various organoaluminums. The iron complexes displayed good activities in the presence of MAO and MMAO. Upon activated by Et2AlCl, the cobalt analogues showed moderate ethylene reactivity, while the nickel analogues exhibited relatively higher activities.  相似文献   

10.
Two binuclear complexes [CpM(Cl)CarbS]2 (Cp = η5-C5Me5, M = Rh (1a), CarbS = SC2(H)B10H10, Ir (1b)) were synthesized by the reaction of LiCarbS with the dimeric metal complexes [CpMCl(μ-Cl)]2 (M = Rh, Ir). Four mononuclear complexes CpM(Cl)(L)CarbS (L = BunPPh2, M = Rh (2a), Ir (2b); L = PPh3, M = Rh (4a), Ir (4b)) were synthesized by reactions of 1a or 1b with L (L = BunPPh2 (2); PPh3 (4)) in moderate yields, respectively. Complexes 3a, 3b, 5a, 5b were obtained by treatment of 2a, 2b, 4a, 4b with AgPF6 in high yields, respectively. All of these compounds were fully characterized by IR, NMR, and elemental analysis, and the crystal structures of 1a, 1b, 2a, 2b, 4a, 4b were also confirmed by X-ray crystallography. Their structures showed 3a, 3b and 5a, 5b could be expected as good candidates for heterolytic dihydrogen activation. Preliminary experiments on the dihydrogen activation driven by these half-sandwich Rh, Ir complexes were done under mild conditions.  相似文献   

11.
In HF-SbF5, quinidine 1a or its dihydrochloride cyclises previously obtained with usual acids. A similar reaction is observed in the presence of CCl4. Under similar conditions quinidine acetate 1b and epiquinidine acetate 2b dihydrochlorides both yield 10,10-difluoro derivatives epimeric at C-3, 6 and 7, and 9c and 10b, and a rearranged difluoro derivative 8b and 11b, respectively. Epiquinidine 2a leads to the expected analogues 10a and 11a and to a ketone 9a. Formation of gem-difluoro compounds implies chloro intermediates at C-10, precursors of α-chlorocarbenium ions, which are trapped by a fluoride ion and which lead by halogen exchange to the products.  相似文献   

12.
The synthesis, mesomorphic behavior, and optical properties of two new series of metal complexes 1a,b-M (M=Pd, Cu, Zn) derived from benzoxazoles 2a,b are reported. The crystal and molecular structures of mesogenic 5-decyloxy-2-(6-decyloxybenzooxazol-2-yl)phenol and nonmesogenic bis[5-octyloxy-2-(6-octyloxybenzooxazol-2-yl) phenol]Pd(II) were determined by means of X-ray structural analysis. Two benzoxazoles 2a exhibited monotropic SmA phases, and all benzoxazoles 2b were nonmesogenic. On the other hand, metal complexes 1a-M exhibited distinctly different mesomorphism from complexes 1b-M. Complexes 1a-Pd formed SmC phases; complexes 1a-Cu and 1a-Zn formed crystal phases. In contrast, complexes 1b-Zn exhibited columnar phases, and complexes 1b-Cu and 1b-Pd were nonmesogenic. The difference of the mesomorphism in 1a-M and 1b-M was probably attributed to the geometry and/or the overall molecular shape created by 2a and 2b. The electronic configuration of metal ion might play an important role in forming the mesophases. The fluorescent properties of these compounds were also examined.  相似文献   

13.
New pyridine-phosphine chalcogenide ligands, tris[2-(2-pyridyl)ethyl]phosphine sulfide 1a and tris[2-(2-pyridyl)ethyl]phosphine selenide 1b, react with zinc(II) and cadmium(II) chlorides in EtOH at room temperature to afford complexes of compositions 2ZnCl2·2L (2, L = 1a) and 3CdCl2·2L (3a,b, L = 1a,b) in high yields. The solid-state structure of complexes 2, 3 has been proved by X-ray analysis data. Complex 2 is a centrosymmetric dimer, where two atoms of zinc are bonded by two bridging pyridine-phosphine sulfide ligands through N atoms. Complexes 3a,b exist as polymeric chains with each bridging ligand acting as a chelate N,S- or N,Se-donor to one cadmium(II) center and as a pyridine N-donor to the next cadmium(II) center.  相似文献   

14.
Vegar Stockmann 《Tetrahedron》2008,64(32):7626-7632
Two new types of pyrido-fused tris-heterocycles (1a,b and 2a,b) have been prepared from 3-aminopyridine in five/six steps. A synthetic strategy for the preparation of the novel pyrido[3,4-b]thieno[2,3- and 3,2-d]pyrroles (1a,b) and pyrido[4,3-e]thieno[2,3- and 3,2-c]pyridazines (2a,b) has been studied. The Suzuki cross coupling of the appropriate 2- and 3-thienoboronic acids (3,4) and 4-bromo-3-pyridylpivaloylamide (9) afforded the biaryl coupling products (10,11) in high yields (85%). Diazotization of the hydrolysed (2-thienyl)-coupling product (12) and azide substitution gave the 3-azido-4-(2-thienyl)pyridine intermediate (72%, 14). 3-Azido-4-(3-thienyl)pyridine (15) was prepared by exchanging the previous order of reactions. The desired β-carboline thiophene analogues (1a,b) were obtained via the nitrene by thermal decomposition of the azido precursors (14,15). By optimising conditions for intramolecular diazocoupling, the corresponding pyridazine products (72-83%, 2a,b) were afforded.  相似文献   

15.
The benzene and quinoxaline fused Δ2-1,2,3-triazolines 1a and 1b were synthesized in good yields using Knoevenagel condensation and intramolecular 1,3-dipolar cycloaddition as two of the key reactions. Photolysis (254 nm) of Δ2-1,2,3-triazoline 1a or 1b in acetonitrile led to the homolytic cleavage of nitrogen that generated diethyl diazomalonate 7, highly reactive intermediates aziridines 8a,b, and isoindoles B. The latter two species subsequently underwent rearrangement to give the nitrogen extrusion products 9a,b, and polymers. Furthermore, the reactive intermediates were trapped by dienophiles to give the corresponding cycloadducts. Subsequent rearrangement of the N-bridged cycloadducts gave N-substituted pyrrolo[3,4-b]quinoxalines 12b and 15b in 6% and 9% yields, respectively. Irradiation of 1a in the presence of fumaronitrile led to the isolation of cycloadduct 16a with retention of stereochemistry. Thermal reaction of 1b gave more nitrogen extruded product 9b (58-63% yield) than that by photolysis (5-23% yield), which implied that zwitterionic intermediate might be involved in the former.  相似文献   

16.
In HF-SbF5, with or without H2O2, a source of ‘OH+’ equivalent, quinidine 1a yields three ethers, the preferred conformation of the substrate favoring the observed cyclization. Under similar conditions, quinidine acetate 1b, epiquinidine 2a, and its acetate 2b give fluorhydrins with or without rearrangement in different amounts according to the nature of the substrate and the acidity. At low acidity, epiquinidine 2a yields selectively a sole nonrearranged fluorhydrin 10a. Quinidine acetate 1b, at high acidity, yields only rearranged fluorhydrins 8b and 9b.  相似文献   

17.
Synthetic, structural and catalysis studies of Ni(II) and Cu(II) complexes of a series of phenoxy-ketimine ligands with controlled variations of sterics, namely 2-[1-(2,6-diethylphenylimino)ethyl]phenol (1a), 2-[1-(2,6-dimethylphenylimino)ethyl]phenol (1b) and 2-[1-(2-methylphenylimino)ethyl]phenol (1c), are reported. Specifically, the ligands 1a, 1b and 1c were synthesized by the TiCl4 mediated condensation reactions of the respective anilines with o-hydroxyacetophenone in 21–23% yield. The nickel complexes, {2-[1-(2,6-diethylphenylimino)ethyl]phenoxy}2Ni(II) (2a) and {2-[1-(2,6-dimethylphenylimino)ethyl]phenoxy}2Ni(II) (2b), were synthesized by the reaction of the respective ligands 1a and 1b with Ni(OAc)2 · 4H2O in the presence of NEt3 as a base in 71–75% yield. The copper complexes, {2-[1-(2,6-diethylphenylimino)ethyl]phenoxy}2Cu(II) (3a), {2-[1-(2,6-dimethylphenylimino)ethyl]phenoxy}2Cu(II) (3b) and {2-[1-(2-methylphenylimino)ethyl]phenoxy}2Cu(II) (3c) were synthesized analogously by the reactions of the ligands 1a, 1b and 1c with Cu(OAc)2 · H2O in 70–87% yield. The molecular structures of the nickel and copper complexes 2a, 2b, 3a, 3b and 3c have been determined by X-ray diffraction studies. Structural comparisons revealed that the nickel centers in 2a and 2b are in square planar geometries while the geometry around the copper varied from being square planar in 3a and 3c to distorted square planar in 3b. The catalysis studies revealed that while the copper complexes 3a, 3b and 3c efficiently catalyze ring-opening polymerization (ROP) of l-lactide at elevated temperatures under solvent-free melt conditions, producing polylactide polymers of moderate molecular weights with narrow molecular weight distributions, the nickel counterparts 2a and 2b failed to yield the polylactide polymer.  相似文献   

18.
Treatment of the functionalized Schiff base ligands with boronic esters 1a, 1b, 1c and 1d with palladium (II) acetate in toluene gave the polynuclear cyclometallated complexes 2a, 2b, 2c and 2d, respectively, as air-stable solids, with the ligand as a terdentate [C,N,O] moiety after deprotonation of the -OH group. Reaction of 1j with palladium (II) acetate in toluene gave the dinuclear cyclometallated complex 5j. Reaction of the cyclometallated complexes with triphenylphosphine gave the mononuclear species 3a, 3b, 3c, 3d and 6j with cleavage of the polynuclear structure. Treatment of 2c with the diphosphine Ph2PC5H4FeC5H4PPh2 (dppf) in 1:2 molar ratio gave the dinuclear cyclometallated complex 4c as an air-stable solid.Deprotection of the boronic ester can be easily achieved; thus, by stirring the cyclometallated complex 3a in a mixture of acetone/water, 3e is obtained in good yield. Reaction of the tetrameric complex 2a with cis-1,2-cyclopentanediol in chloroform gave complex 2c after a transesterification reaction. Under similar conditions complexes 3a and 3d behaved similarly: with cis-1,2-cyclopentanediol, pinacol or diethanolamine complexes 3c, 3b, 3g and 3f, were obtained. The pinacol derivatives 3b and 3g experiment the Petasis reaction with glyoxylic acid and morpholine in dichloromethane to give complexes 3h, and 3i, respectively.  相似文献   

19.
The photooxygenation of three homoallylic substrates, the γ,δ-unsaturated ketone 1a, nitrile 2a, and the γ,δ-unsaturated ester 3a was investigated in homogeneous solution and in microemulsion (for 1a). Two secondary reaction pathways were detected for the allylic hydroperoxides of type b and c, respectively. The cyclization reactions of 1b and 2b to the 1,2-dioxanes 1d and 2d followed well-known reaction patterns, whereas the base-catalyzed epoxide (1e-3e) formation from the tertiary allylic hydroperoxides 1c-3c is a unprecedented reaction type.  相似文献   

20.
The effectivity of optical switching between anthracene derivatives 3a,b and their intramolecular photocycloadducts 4a,b is impaired by traces of acid. The systematic treatment of 4a,b with an increasing excess of formic acid revealed that—apart from the normal enolether cleavage 4a,b6a,b7a,b—a cleavage with rearrangement of the carbon skeleton can occur: 5b6b′. The driving force is a stability enhancement of the involved carbenium ions 5b5b′. A further increased excess of formic acid leads finally to a competitive ether cleavage in the tetrahydrofuran ring 5b8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号