首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Ferrocenyllithium reacts with M(CO)6 (M = Cr, W, Mo) in THF to give, after alkylation at oxygen, the corresponding carbene complexes 3a-c in good yield. Complexes 3a,b were characterized by X-ray analysis. These complexes react with pentylamine to give the corresponding aminocarbene complexes 7a-c and with allylamine to give, in the case of chromium and tungsten, the corresponding and expected aminonocarbene complexes 8a,b, and for molybdenum, complex 9c in which the double bond is already coordinated to the metal. 8a,b could be converted in 9a,b in excellent yield. The structure of 9a could be confirmed by an X-ray analysis. Alkylations at nitrogen could be carried on complex 9c as well as on complexes 9a,b.  相似文献   

2.
First examples of tungsten aminocarbene complexes [(OC5)W{C(SiR1nR23-n)NH2}] 2a-d (R1 = Ph, R2 = Me) were synthesized via ammonolysis of the corresponding methoxycarbene complexes 1a-d. They were characterized by NMR spectroscopy, MS, IR, UV/Vis and elemental analysis, and in the case of the C-triphenylsilyl derivative 2a by single-crystal X-ray structure analysis. The reaction of P-chloro alkylidenephosphane 3 with complexes 2a-d, meant to give 2H-azaphosphirene complexes, was monitored by 31P NMR spectroscopy to reveal the formation of the products 4-7, which were presumably formed via decomposition of the transient complexes 10a-d.  相似文献   

3.
Two binuclear complexes [CpM(Cl)CarbS]2 (Cp = η5-C5Me5, M = Rh (1a), CarbS = SC2(H)B10H10, Ir (1b)) were synthesized by the reaction of LiCarbS with the dimeric metal complexes [CpMCl(μ-Cl)]2 (M = Rh, Ir). Four mononuclear complexes CpM(Cl)(L)CarbS (L = BunPPh2, M = Rh (2a), Ir (2b); L = PPh3, M = Rh (4a), Ir (4b)) were synthesized by reactions of 1a or 1b with L (L = BunPPh2 (2); PPh3 (4)) in moderate yields, respectively. Complexes 3a, 3b, 5a, 5b were obtained by treatment of 2a, 2b, 4a, 4b with AgPF6 in high yields, respectively. All of these compounds were fully characterized by IR, NMR, and elemental analysis, and the crystal structures of 1a, 1b, 2a, 2b, 4a, 4b were also confirmed by X-ray crystallography. Their structures showed 3a, 3b and 5a, 5b could be expected as good candidates for heterolytic dihydrogen activation. Preliminary experiments on the dihydrogen activation driven by these half-sandwich Rh, Ir complexes were done under mild conditions.  相似文献   

4.
Readily prepared 2-, 4- and 5-bromo-3-methyl thiazolium triflates react by oxidative substitution with M(PPh3)4 (M = Ni or Pd) to furnish five of the expected normal and abnormal cationic thiazolylidene complexes (1a, 1b, 2a, 2b, and 3b). Carbene complex formation is accompanied by a ca. 40 ppm downfield shift of the α-N carbene carbons in Pd complexes 1 and 2 in their 13C NMR spectra but the chemical shift of C(carbene) in the abnormal3b (δ 135.7) is particularly low. Crystal and molecular structures of complexes 1a, 2b, and 3b all indicate a square planar arrangement of the ligands around the central metal atoms. The new complexes catalyse Suzuki-Miyaura aryl coupling.  相似文献   

5.
Direct complexation of (amino)(phosphino)carbene 1a and (amino)(oxy)carbene 1b featuring a phosphino group in position-6 to the carbene with [Rh(CO)2Cl]2 has been studied. With the 1,2-bidentate ligand 1a, an original cationic complex 2 featuring two (amino)(phosphino)carbenes η2-bonded to the metal has been isolated in 79% yield. In the case of the 1,6-bidentate ligand 1b, a rhodium(I) complex 3 in which the carbene is in trans position relative to the CO ligand was obtained in 85% yield. Both compounds were fully characterized including X-ray diffraction studies.  相似文献   

6.
A series of benzyloxybenzaldehyde derivatives (1-4) were synthesized by the reactions of 4-(bromomethyl)benzonitrile with 4-hydroxy-3-methoxybenzaldehyde (vanillin), 2-hydroxy-3-methoxybenzaldehyde (o-vanillin), 2-hydroxy-4-methoxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde. Condensation reactions among the new benzyloxybenzaldehyde derivatives (1-4) with 4′-aminobenzo-15-crown-5 yielded the new Schiff base compounds (5-8). Sodium complexes (5a-8a) and potassium complexes (5b-8b) were prepared with NaClO4 and KI, respectively. All of these synthesized compounds were characterized on the basis of FT-IR, 1H and 13C NMR, mass spectrometry and elemental analyses data. The solid state structures of compounds 8 and 5a were determined by X-ray crystallography. The extraction abilities of compounds 5-8 were also evaluated in CH2Cl2 by using several main group and transition metal picrates, such as Na+, K+, Pb2+, Cr3+, Ni2+, Cu2+ and Zn2+.  相似文献   

7.
[MBr(CO)3{κ2(N,O)-pyca}] [M = Mn(1a), Re(1b), pyca = pyridine-2-carboxaldehyde] and [MoCl(η3-C3H4Me-2)(CO)2{κ2(N,O)-pyca}] (1c) react with aminoacid β-alanine to give the corresponding iminopyridine complexes 2a-2c. The same method affords the iminopyridine derivatives from γ-aminobutyric acid (GABA) (3a-3c) and 3-aminobenzoic acid (4a-4c). For complexes 2a-2c, 3a, 3c and 4a, the solid state structures have been determined by X-ray crystallography, revealing interesting differences in their hydrogen-bonding patterns in solid state.  相似文献   

8.
Pentacarbonyl(η2-cis-cyclooctene)chromium(0) (1) catalyzes efficiently reactions of diazo compounds with electron-rich furans. The reaction of 2-methoxyfuran (2) with alkyl α-diazoarylacetate (3a-g) furnishes the (2E,4Z)-2-aryl-hexadienedioic acid diesters (4a-g) in excellent yields. These reactions are highly regioselective. The cyclopropanation intermediates formed from 1 and diazo compounds 3a-g always arise from a carbene addition to the less substituted CC bond of 2. The resulting cyclopropanation product undergoes a ring opening reaction to form the corresponding (2E,4Z)-2-aryl-hexadienedioic acid diesters (4a-g). The pentacarbonylchromium(0)-catalyzed reactions of 2-alkylfuran (5a-b) with ethyl α-diazophenylacetate (3a) and 9-diazo-9H-fluorene (3h) produce the 1(E),3(E)-butadienes (6a-d) in very good yields.  相似文献   

9.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

10.
The cationic manganese tricarbonyl complexes containing η6-2-methylhydroquinone (2a), η6-2,3-dimethylhydroquinone (3a), η6-2-t-butylhydroquinone (4a), η6-tetramethylhydroquinone (5a) and η6-4,4′-biphenol (6a) are readily deprotonated to the corresponding neutral (η5-semiquinone)Mn(CO)3 (2b-6b) and anionic (η4-quinone)Mn(CO)3 (2c-5c) complexes. The X-ray structures of 2b-6b feature strong intermolecular hydrogen bonding interactions that result in the formation of supramolecular organometallic networks. Significantly, the substitution pattern at the semiquinone ring affects the stereochemistry of the hydrogen bonding interactions. NMR spectra of 2b, 3b and 5b reveal dynamic hydrogen bonding in solution.  相似文献   

11.
Two triphenylphosphine derivatives, diethyl [4-(diphenylphosphanyl)benzyl]phosphonate (3a) and tetraethyl {[5-(diphenylphosphanyl)-1,3-phenylene]dimethylene}bis(phosphonate) (3b), and also the corresponding free acids 4a and 4b were prepared. These ligands were characterized by 1H, 13C and 31P NMR spectroscopy and mass spectrometry. A full set of their Pd(II) and Pt(II) complexes of the general formula [MCl2L2] and one dinuclear complex trans-[Pd2Cl4(3a)2] were synthesized and their isomerization behaviour in solution was studied. The complexes were characterized by 1H, 13C, 31P and 195Pt NMR spectroscopy, mass spectrometry and far-IR spectroscopy. The X-ray structures of all complexes with 3a or 3b have usual slightly distorted square-planar geometry on the metal ion. Salts of phosphonic acids 4a and 4b and their complexes are freely soluble in aqueous solution; therefore, they can be potentially useful in aqueous or biphasic catalysis.  相似文献   

12.
The reaction of the electronically unsaturated platina-β-diketone [Pt2{(COMe)2H}2(μ-Cl)2] (1a) with N?N donors led to the formation of diacetyl(hydrido)platinum(IV) complexes [Pt(COMe)2Cl(H)(N?N)] (2). By the reaction of these complexes with NaOH in a two-phase system (H2O/CH2Cl2) diacetylplatinum(II) complexes [Pt(COMe)2(N?N)] (N?N = bpy, 4a; 4,4′-Me2-bpy, 4b; 4,4′-t-Bu2-bpy, 4c; 4,4′-Ph2-bpy, 4d; 4,4′-t-Bu2-6-n-Bu-bpy, 4e; bpym, 4f; bpyr, 4g; phen, 4h; 4-Me-phen, 4i; 5-Me-phen, 4j) were obtained. All complexes were characterized by microanalysis, IR and 1H and 13C NMR spectroscopy. Additionally, complexes 4a, 4c, 4d and 4e were characterized by single-crystal X-ray diffraction analysis. The observed variety of packing patterns resulting from π-π stacking and hydrogen bonding is discussed.  相似文献   

13.
The binuclear alkoxycarbene complexes [M2(CO)9{C(OEt)C4H3Y}] (M = Mn, Y = S(1), O(2); Re, Y = S(3), O(4)) were synthesised and characterised, giving axial carbene ligands for the dimanganese complexes, and equatorial carbene ligands for the dirhenium complexes. Aminolysis of these complexes with ammonia and n-propylamine yielded complexes [M2(CO)9{C(NHR)C4H3Y}] (R = H, M = Mn, Y = S(5), O(6); Re, Y = S(7), O(8); R = propyl, M = Mn, Y = S(9), O(10); Re, Y = S(11), O(12)). For the smaller NH2-substituted carbene ligands, the X-ray structures determined showed equatorial carbene ligands for both dimanganese and dirhenium complexes, while the NHPr-substituted carbene complexes retained the original configurations of the precursor alkoxy carbene complex, indicating that the steric effects of both the M(CO)5-fragment and the carbene ligand substituent can affect the coordination site of the carbene ligands of Group VII transition metal complexes in the solid state.  相似文献   

14.
Protonation of the trimethylenemethane derivatives, Cp*Zr(σ2,π-C4H6)[N(R1)C(Me)N(R2)] (1a: R1=R2=i-Pr and 1b: R1=Et, R2=t-Bu) (Cp*=η5-C5Me5), by [PhNMe2H][B(C6F5)4] in chlorobenzene at −10 °C provides the cationic methallyl complexes, Cp*Zr(η3-C4H7)[N(R1)C(Me)N(R2)] (2a: R1=R2=i-Pr and 2b: R1=Et, R2=t-Bu), which are thermally robust in solution at elevated temperatures as determined by 1H NMR spectroscopy. Addition of B(C6F5)3 to 1a and 1b provides the zwitterionic allyl complexes, Cp*Zr{η3-CH2C[CH2B(C6F5)3]CH2}[N(R1)C(Me)N(R2)] (3a: R1=R2=i-Pr and 3b: R1=Et, R2=t-Bu). The crystal structures of 2b and 3a have been determined. Neither the cationic complexes 2 or the zwitterionic complexes 3 are active initiators for the Ziegler-Natta polymerization of ethylene and α-olefins.  相似文献   

15.
The cationic complexes [(η6-arene)Ru(N,O-amino amide)X]Y (arene = p-cymene or indane; N,O-amino amide = (l)-proline amide or (l)-phenylalanine amide; X = Cl or I; Y = Cl, I or PF6) have been synthesised and fully characterized by spectroscopic and analytical methods. In several cases (1a, 3a, 4a, 4b, 5) the metal configuration has been definitively established by X-ray analysis on single crystal. The lability of the metal center in solution has been studied by 1H NMR and CD techniques. The highest configurational stability has been found in the complexes of the type [(η6-indane)Ru(N,O-proline amide)Cl]Y (4a,b). The complexes 1b, 2a-b, 3b, 4b and 5 are good precatalysts for the transfer hydrogenation of acetophenone in basic i-PrOH, with ee up to 76% at 30 °C. An ESI(+)-MS study of pre-catalytic solutions has provided useful information on the catalytic mechanism.  相似文献   

16.
The reaction of sodium cyanopentacarbonylmetalates Na[M(CO)5(CN)] (M=Cr; Mo; W) with cationic Fe(II) complexes [Cp(CO)(L)Fe(thf)][O3SCF3], [L=PPh3 (1a), CN-Benzyl (1b), CN-2,6-Me2C6H3 (1c); CN-But (1d), P(OMe)3 (1e), P(Me)2Ph (1f)] in acetonitrile solution, yielded the metathesis products [Cp(CO)(L)Fe(NCCH3)][NCM(CO)5] [M=W, L=PPh3 (2a), CN-Benzyl (2b), CN-2,6-Me2C6H3 (2c); CN-But (2d), P(OMe)3 (2e), P(Me)2Ph (2f); M=Cr, L=(PPh3) (3a), CN-2,6-Me2C6H3 (3c); M=Mo, L=(PPh3) (4a), CN-2,6-Me2C6H3 (4c)]. The ionic nature of such complexes was suggested by conductivity measurements and their main structural features were determined by X-ray diffraction studies. Well-resolved signals relative to the [M(CO)5(CN)] moieties could be distinguished only when 13C NMR experiments were performed at low temperature (from −30 to −50 °C), as in the case of [Cp(CO)(PPh3)Fe(NCCH3)][NCW(CO)5] (2a) and [Cp(CO)(Benzyl-NC)Fe(NCCH3)][NCW(CO)5] (2b). When the same reaction was carried out in dichloromethane solution, neutral cyanide-bridged dinuclear complexes [Cp(CO)(L)FeNCM(CO)5] [M=W, L=PPh3 (5a), CN-Benzyl (5b); M=Cr, L=(PPh3) (6a), CN-2,6-Me2C6H3 (6c), CO (6g); M=Mo, L=CN-2,6-Me2C6H3 (7c), CO (7g)] were obtained and characterized by infrared and NMR spectroscopy. In all cases, the room temperature 13C NMR measurements showed no broadening of cyano pentacarbonyl signals and, relative to tungsten complexes [Cp(CO)(PPh3)FeNCW(CO)5] (5a) and [Cp(CO)(CN-Benzyl)FeNCW(CO)5] (5b), the presence of 183W satellites of the 13CN resonances (JCW ∼ 95 Hz) at room temperature confirmed the formation of stable neutral species. The main 13C NMR spectroscopic properties of the latter compounds were compared to those of the linkage isomers [Cp(CO)(PPh3)FeCNW(CO)5] (8a) and [Cp(CO)(CN-Benzyl)FeCNW(CO)5] (8b). The characterization of the isomeric couples 5a-8a and 5b-8b was completed by the analyses of their main IR spectroscopic properties. The crystal structures determined for 2a, 5a, 8a and 8b allowed to investigate the geometrical and electronic differences between such complexes. Finally, the study was completed by extended Hückel calculations of the charge distribution among the relevant atoms for complexes 2a, 5a and 8a.  相似文献   

17.
The quinolinylcyclopalladated complexes 3ab were synthesised in good yields (81% and 77%) by the insertion reaction of the prepared dinuclear palladium complexes [Pd(C,N-2-C9H4N-CHO-3-R-6)Cl(PPh3)]2 [(R = H (2a), R = OMe (2b)] with isonitrile XyNC (Xy = 2,6-Me2C6H3). The cyclopalladated complexes 3ab were also obtained in low yields (39% and 33.5%) via a one pot oxidative addition reaction of quinoline chloride 1ab with isonitrile XyNC:Pd(dba)2 (4:1). The reactions of 3ab with Tl(TfO) (TfO = triflate, CF3SO3) in the presence of H2O or EtOH causes depalladation reactions of the complexes to provide the corresponding organic compounds 4ab, 5ab and 6ab in yields (41%, 27% and 18–19%). The products were characterized by satisfactory elemental analyses and spectral studies (IR, 1H, 13C and 31P NMR). The crystal structures of 2a, 3a and 3b were determined by X-ray diffraction studies.  相似文献   

18.
The preparation and properties of mono- versus bis(carbene) Pd(II) complexes bearing unsymmetrical cyano- and ester-functionalized NHC ligands as potential IR probes were studied in detail. Direct reaction of Pd(OAc)2 with functionalized imidazolium salts afforded either bis(carbene) (3a, c) or monocarbene complexes (5, 6) with a N-coordinated imidazole co-ligand. The latter were exclusively obtained with N-ethylene substituted salts, which were found to undergo N-C cleavage reaction. The milder Ag-carbene transfer reaction on the other hand was tolerable to the length of the substituents and the nature of the functional groups. All bis(carbene) complexes (3a-c, 4a-c) were obtained as a inseparable mixture of square-planar trans-anti and trans-syn rotamers. The identity, ratio and dynamic equilibrium of these rotamers have been investigated and the relatively high rotational barrier for rotamers of 3a was estimated to be about 74 kJ mol−1 at 380 K. All eight complexes were fully characterized by NMR and IR spectroscopies, ESI mass spectrometry and X-ray single crystal and powder diffraction. A preliminary catalytic study showed that ester-functionalized complexes 4a and 4b gave rise to highly active catalyst in the double Mizoroki-Heck coupling of aryl dibromides, while the in situ ester-hydrolyzed complexes were also active in the coupling of activated aryl chlorides.  相似文献   

19.
The new well-defined and air-stable ortho-xylyl-linked N-heterocyclic carbene (NHC) Pd complexes (2a-d) have been synthesized and characterized by elemental analysis, 1H NMR, 13C NMR, IR spectroscopy, and single crystal X-ray diffraction studies. The palladium atom in the complex 2a lies on a crystallographic mirror plane and can be described as having a square-planar coordination environment with the carbene atoms of the benzimidazole rings of the ligand occupying two coordination sites in cis positions. Two further coordination sites are occupied by chloride ligands. The benzimidazole rings are connected to each other by an ortho-xylyl bridge. The catalytic activity of these palladium complexes has been tested in the coupling reactions of various N-containing substrates with bromobenzene. A preliminary catalytic study shows that the bis(NHC)-Pd complexes are highly active in the Buchwald-Hartwig amination reaction.  相似文献   

20.
Two novel Ni(II) complexes {[Ni(en)2(pot)2]0.5CHCl3} (3) {pot = 5-phenyl-1,3,4-oxadiazole-2-thione} (1) and [Ni(en)2](3-pytol)2 (4) {3-pytol = 5-(3-pyridyl)-1,3,4-oxadiazole-2-thiol} (2) have been synthesized using en as coligand. The metal complexes have been characterized by physical and analytical techniques and also by single crystal X-ray studies. The complexes 3 and 4 crystallize in monoclinic system with space group P21/a and P121/c, respectively. The complex 3 has a slightly distorted octahedral geometry with trans (pot) ligands while 4 has a square planar geometry around the centrosymmetric Ni(II) center with ionically linked trans (3-pytol) ligands. The π?π (face to face) interaction plays an important role along with hydrogen bondings to form supramolecular architecture in both complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号