首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bimetallic alkylidene complexes of tungsten (R′O)2(ArN)WCH-SiR2-CHW(NAr)(OR′)2 (R = Me (1), Ph (2)) and (R′O)2(ArN)WCH-SiMe2SiMe2-CHW(NAr)(OR′)2 (3) (Ar = ; R′ = CMe2CF3) have been prepared by the reactions of divinyl silicon reagents R2Si(CHCH2)2 with known alkylidene compounds R′′-CHMo(NAr)(OR′)2. (R′′ = But, PhMe2C) Complexes 1-3 were structurally characterized. Ring opening metathesis polymerization (ROMP) of cyclooctene using compounds 1-3 as initiators led to the formation of high molecular weight polyoctenamers with predominant trans-units content in the case of 1 and 3 and predominant cis-units content in the case of 2.  相似文献   

2.
Reacting [PtCl(PTA)3]Cl(PTA = 1,3,5-triaza-7-phosphatricyclo[3.3.1.13,7]decane) with KSeCN in aqueous or MeOH medium results in the abstraction of the PTA ligands to yield SePTA. The reaction also proceeds quantitatively by direct reaction of PTA and KSeCN in water or methanol. The methylated PTA ligand, [PTA-Me]I (1-methyl-1-azonia-3,5-diaza-7-phosphatricyclo[3.3.1.13,7]decane iodide), reacts accordingly with KSeCN, albeit significantly slower. The crystal structure of SePTA, 1, and [SePTA-Me]I · CH3OH, 2, revealed PSe bond distances of 2.0991(19) and 2.100(2) Å, respectively. The first order phosphorous selenium coupling constants, 1JP-Se (D2O), of 722 and 788 Hz for SePTA and [SePTA-Me]I, respectively, indicates the latter is significantly less electron rich.  相似文献   

3.
Dechlorofluorination of ArSb(F)-C(Cl)CR2 (CR2 = fluorenylidene, Ar = 2,4,6-tri-tert-butylphenyl) by tert-butyllithium afforded a 3,4-bis(fluorenylidene)-1,2-distibacyclobutane. The formation of the latter probably involves the transient stibaallene ArSbCCR2 followed by a head-to-head dimerization via two SbC double bonds. Molecular orbital calculations at the ab initio and DFT levels support the head-to-head dimerization of ArSbCCR2 with the formation of a 1,2-distibacyclobutane.  相似文献   

4.
Reaction of cis-[RuCl2(dppm)2] (dppm = 1,2-bis(diphenylphosphino)methane) with PhCCH and NaPF6 utilising methanol as solvent results in the formation of the η3-butenynyl complex [Ru(η3-PhCCCCHPh)(dppm)2][PF6] in good yield. Similar reactions with ButCCH and PrnCCH resulted in the corresponding alkyl-substituted complexes and all three of these compounds have been characterised by NMR spectroscopy and X-ray crystallography. The mechanism of this reaction has been probed by employing labelling experiments with both PhCCD and PhC13CH allowing the identity of possible intermediates in the reaction to be determined. Furthermore, [Ru(η3-PhCCCCHPh)(dppm)2][PF6] has been shown to be an effective regio- and stereo-selective catalyst for the dimerisation of PhCCH to Z-PhCCCHCHPh in the absence of solvent. In contrast, no evidence for the formation of alkyne coupling was obtained from the reaction of cis-[RuCl2(dppe)2] (dppe = 1,2-bis(diphenylphosphino)ethane) with PhCCH and NaPF6.  相似文献   

5.
6.
The Raman spectra of neat (C2H5)2CO (pentanone) and its binary mixtures with hydrogen donor solvent (CH3OH), [(C2H5)2CO + CH3OH] having different mole fractions of the reference system, (C2H5)2CO in the range 0.1-0.9 at a regular interval of 0.1 were recorded in the CO stretching region. In neat liquid, the Raman peak appears asymmetric. The asymmetric nature of the peak has been attributed to the CO stretching mode of the two conformers of (C2H5)2CO having C2 and C2v point groups and the corresponding bands at ∼1711 and ∼1718 cm−1, respectively. A careful analysis of the Iiso (isotropic component of the Raman scattered intensity) at different concentrations reveals that upon dilution with methanol, at mole fraction C = 0.6, an additional peak in the CO stretching region is observed at ∼1703 cm−1 which is attributed to the hydrogen bonding with methanol. A peculiar feature in this study is that upon dilution, the peak at ∼1718 cm−1 shows a minimum at C = 0.6, but on further dilution it shows a blue shift. However, the other peak at ∼1711 cm−1 shows a continuous red shift with dilution as well as a maximum at C = 0.7 in the linewidth vs. concentration plot, which is essentially due to competition between motional narrowing and diffusion phenomena. A significant amount of narrowing in the Raman band at ∼1718 cm−1 can be understood in terms of caging effect of the reference molecule by the solvent molecules at high dilution. A density functional theoretic (DFT) calculation on optimized geometries and vibrational frequencies of two conformers of neat (C2H5)2CO in C2 ad C2v forms and the complexes with one and two CH3OH molecules with both the conformers was performed. The experimental results and theoretical calculations together indicate a co-existence of two conformers as well as hydrogen bonded complex with methanol in the binary mixture, [(C2H5)2CO + CH3OH] at intermediate concentrations.  相似文献   

7.
The reaction of NO2 with perfluorobuta-1,3-diene, CF2CFCFCF2 (C4F6), has been studied at 312.9, 323.0, 333.4, 396.0 and 418.0 K, using a conventional static system. The products formed in the temperature range 312.9-333.4 K were CF2CFCF(NO2)CF2(NO2) (I), CF2(NO2)CFCFCF2(NO2) (II), CF2CFCF(NO2)C(O)F (III) and CF2(NO2)CFCFC(O)F (IV) and FNO. The formation of these compounds was detected performing infrared and Raman spectra. The infrared spectrum shows a band at 1785 cm−1, characteristic to the terminal -CFCF2 group and the Raman spectrum shows a band located at 1733 cm−1, corresponding to -CFCF- group. It indicates, that in this temperature range, NO2 attacks initially only one double bound of CF2CFCFCF2. Since the intermediate radical CF2CFCFCF2(NO2) formed in this process is allylic in nature, so there is no isomerization involved in this process, but rather the allylic radical is able to add the second NO2 either to CF2 or CFCF2(NO2) end, forming the corresponding products. At 396.0 and 418.0 K different products were observed: CF2(NO2)CF(NO2)C(O)F (V), NO, CF3C(O)F, C(O)F2 and traces of epoxide of tetrafluoroethene, showing that, at these temperatures, both double bonds are attacked by NO2 and detachment of CF2 group is produced. The mechanisms consistent with experimental results in the temperature range 312.9-333.4 and at 396.0 and 418 K are proposed.  相似文献   

8.
Within the framework of polarizable continuum model with integral equation formalism (IEF-PCM), an argon matrix effect on the geometry and infrared frequencies of the agostic H2CMH2 (M = Ti, Zr, Hf) methylidene complexes was investigated at B3LYP level of theory with the 6-311++G(3df,3pd) basis set for C, H, and Ti atoms and Stuttgart/Dresden ECPs MWB28 and MWB60 for the Zr and Hf atoms. At the B3LYP/IEF-PCM level of theory, H2CTiH2 was optimized to an energy minimum having a pyramidal structure. The calculated dipole moment of this structure is 3.06 D. The B3LYP/IEF-PCM simulations gave the three complexes’ agostic angle ∠HCM (°), distance r(H?M) (Å), and CM bond length r(CM) (Å) as follows: ∠HCTi = 87.4, r(H?Ti) = 2.079, r(CTi) = 1.803; ∠HCZr = 89.3, r(H?Zr) = 2.243, r(CZr) = 1.956; ∠HCHf = 94.7, r(H?Hf) = 2.343, r(CHf) = 1.972. As a comparison, the B3LYP simulations gave the values as follows: ∠HCTi = 91.5, r(H?Ti) = 2.150, r(CTi) = 1.811; ∠HCZr = 92.9, r(H?Zr) = 2.299, r(CZr) = 1.955; ∠HCHf = 95.6, r(H?Hf) = 2.352, r(CHf) = 1.967. As far as the MH2 symmetric and asymmetric stretching and CH2 wagging frequencies are concerned, the IEF-PCM calculated values are in better agreement with the experimental argon matrix ones than those calculated based on a gas phase model.  相似文献   

9.
Mismatched molecular 1:1 complexes of C10F8 with catenated chalcogen-nitrogen compounds C6H5-X-NSN-SiMe3 (X = S, Se) were prepared and characterized by X-ray crystallography. The complexes provide examples of structurally non-rigid polyheteroatom molecules involved in non-covalent arene-polyfluoroarene π-stacking interactions. In going from homocrystals to the co-crystals, the molecular Z, E configuration of the catenated compounds changes from noticeably non-planar to perfectly planar, i.e. C10F8 acts as “molecular iron”. On the other hand, C10H8 does not produce complexes with C6F5-X-NSN-SiMe3 (X = S, Se).  相似文献   

10.
The new ferrole Fe2(CO)6[μ-η24-(Fc)CC{C(H)C(R)S}CC(SiMe3)] [R = SiMe3 (1) and R = Fc (2)] and ruthenoles Ru2(CO)6[μ-η24-(Me3Si)CC{SC(Fc)C(H)}CC(Fc)] 3 and Ru2(CO)6[μ-η24-(Me3Si)CC(SCCFc)C(H)C(Fc)] 4, have been obtained from the reactions of M3(CO)12 (M = Fe, Ru) and FcCCSCCSiMe3 through S-C bond activations and C-C coupling reactions. Thermolysis of Ru2(CO)63243-(Me3Si)CC{SC(Fc)C(SCCSiMe3}Ru(CO)3}CC(Fc)] alone and in the presence of HCCFc, yielded the compounds Ru2(CO)6[μ-η24-(Me3Si)CC{SC(Fc)C(SCCSiMe3)}CC(Fc)] 5 and Ru2(CO)6[μ-η24-(Me3Si)CC{SC(Fc)C(SCCSiMe3)C(H)C(Fc)}CC(Fc)] 6, respectively. The crystal structures of the compounds 1, 3, 4 and 6 are reported.  相似文献   

11.
New pentafluoro-λ6-sulfanylacrylates (F5SCHCHCHO, F5SCHCHCN, F5SCHCHCOOCH3) were synthesized by a convenient and efficient method. These compounds are useful as intermediates in the preparation of pentafluoro-λ6-sulfanyl-containing cyclic and heterocyclic Diels-Alder cycloadducts.  相似文献   

12.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   

13.
The addition of phosphines to the manganese allenylidene complexes Cp(CO)2MnCCC(Ph)R (R = H, Ph) proceeds selectively at the Cα atom to result in the α-phosphonioallenyl complexes Cp(CO)2Mn-C(+PR31)CC(Ph)R. The protonation of the latter affords the η2-(1,2)-phosphonioallenes Cp(CO)2Mn{η2-(1,2)-HC(+PR31)CC(Ph)R}, rather than the phosphoniovinylcarbenes Cp(CO)2MnC(+PR31)-HCC(Ph)R. All complexes obtained are stereochemically rigid and do not isomerize into the η2-(2,3)-phosphonioallene isomers.  相似文献   

14.
The synthesis of the new ruthenium(II) allenylidene complex [ClRu(dppe)2CCC11H6N2][OTf] (4) (dppe = 1,2-bis(diphenylphosphino)ethane) terminated with a 4,5-diazafluorene ligand is reported. Further coordination of that metal allenylidene to ruthenium and rhenium moieties leads to the bimetallic adducts [ClRu(dppe)2CCC11H6N2{Ru(bpy)2}][B(C6F5)4]3 (5a), [ClRu(dppe)2CCC11H6N2{Ru(tBu-bpy)2}][PF6]3 (5b) and [ClRu(dppe)2CCC11H6N2{Re(CO)3Cl}][OTf] (6). Their optical and electrochemical properties show that the allenylidene moiety is an attractive molecular clip for the access to larger original redox-active homo/heteronuclear multi-component supramolecular assemblies. The X-ray crystal structure of the allenylidene metal building block is also described.  相似文献   

15.
The multifunctional ligands [(Z)-FcCCSC(H)C(H)XR] [X = O, R = Me (2a); X = O, R = Et (2b); X = S, R = Ph (3); X = S, R = C6F5 (5)] and [(Z,Z)-Fc(SR)CC(H)SC(H)C(H)SR] [R = Ph (4), C6F5 (6)] have been prepared through hydroalkoxylation and hydrothiolation processes of the alkyne groups in the compound FcCCSCCH 1. Reactions between compound 3 and the carbonyl metals Co2(CO)8, Os3(CO)10(NCMe)2 and Fe2(CO)9 have allowed the synthesis of the polynuclear compounds [(Z)-{Co2(CO)6}(μ-η2-FcCCSC(H)C(H)SPh)] 9, [(Z)-Os3(CO)9(μ-CO){μ32-FcCCSC(H)C(H)(SPh)}] 10 and [(Z)-{Fe3(CO)9}[μ33-(CCS)-FcCCSC(H)C(H)(SPh)] 11. All the compounds have been characterized by elemental analysis, 1H and 13C{1H} NMR spectroscopy, mass spectrometry and the crystal structure of compounds [(Z)-FcCCSC(H)C(H)OMe] 2a and [{Co2(CO)6}2(μ-η22-FcCCSCCSiMe3)] 7 have been solved by X ray diffraction analysis.  相似文献   

16.
A Mo(0) complex containing a new tetraphosphine ligand [Mo(P4)(dppe)] (1; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2, dppe = Ph2PCH2CH2PPh2) reacted with CO2 (1 atm) at 60 °C in benzene to give a Mo(0) carbonyl complex fac-[Mo(CO)(η3-P4O)(dppe)] (2), where the O abstraction from CO2 by one terminal P atom in P4 takes place to give the dangling P(O)Ph2 moiety together with the coordinated CO. On the other hand, reaction of 1 with TolNCS (Tol = m-MeC6H4) in benzene at 60 °C resulted in the incorporation of three TolNCS molecules to the Mo center, forming a Mo(0) isocyanide-isothiocyanate complex trans,mer-[Mo(TolNC)22-TolNCS)(η3-P4S)] (4), where the S abstraction occurs from two TolNCS molecules by P4 and dppe to give the η3-P4S ligand and free dppeS, respectively, together with two coordinated TolNC molecules. The remaining site of the Mo center is occupied by the third TolNCS ligating at the CS bond in an η2-manner. The X-ray analysis has been undertaken to determine the detailed structures for 2 and 4.  相似文献   

17.
The compounds [Os3(CO)10{μ,η3-(SCH2CH2SCCHC(O)CHCH(C5H4)Fe (C5H5)}] (2), [Os3(CO)9{μ,η3-(SCH2CH2SCCHC(O)CHCH(C5H4)Fe(C5H5)}] (3) and [Os3(CO)832-{CCHC(O)CHCH(C5H4)Fe(C5H5)}(SCH2CH2S)}] (4) have been obtained by rupture of S-C bonds in the ketene dithioacetal [C5H5FeC5H4CHCHC(O)CHC(SCH2CH2S)], in their reaction with the activated cluster [Os3(CO)10(NCMe)2]. The presence of an oxametallacycle in these derivatives has been confirmed by an X-ray diffraction analysis. The electrochemical study has indicated the ability of these compounds to modify the electrode surfaces.  相似文献   

18.
The oxidation of the Pt(IV) tetramethyl complex [ArNCHCHNAr]PtMe4 (Ar = 2,6-Me2C6H3) has been investigated in acetonitrile and dichloromethane. Cyclic voltammetry demonstrates that the irreversible oxidation of [ArNCHCHNAr]PtMe4 occurs at a slightly less positive oxidation potential than the irreversible oxidation of the analogous Pt(II) species [ArNCHCHNAr]PtMe2. The product distribution arising from the oxidation depends strongly on the reaction conditions and includes cationic Pt(IV) species (acetonitrile, dichloromethane solvents) and Pt(II) species (dichloromethane only). Evidence is presented that suggests that homolytic cleavage of a weakened PtC bond in is involved in the oxidatively induced reactions.  相似文献   

19.
The analogues of carboxamides in which the sp2-hybridized oxygen atom is replaced by more electron-withdrawing groups, NSO2CF3 and NSO2C4F9, have been synthesized. The resulting N-perfluoroalkylsulfonyl arenecarboxamidines ArC(NSO2Rf)NH2 (Rf = CF3, C4F9) undergo an oxidative Hofmann-type rearrangement to the corresponding carbodiimides ArNCNSO2Rf under the action of (diacyloxyiodo)arenes. Rearrangement of related compounds ArC(NSO2R)NH2 (R = CH3, Ph) containing fluorine-free substituents at the sulfonyl group also occurs in similar conditions. It was found that the reactivity of amidines rises with the increasing electron-withdrawing ability of the substituent R.  相似文献   

20.
The Perkow reaction of triethyl phosphite and β-alkoxyvinyl trihalogenomethyl ketones, which have common acyclic or cyclic structural fragment: -O-CC-C(O)CX2Cl, yielded dienyl phosphates: -O-CC-C[OP(O)(OEt)2]CX2 where X = F or Cl, whereas γ-bromo-β-methoxy-α,β-unsaturated trifluoromethyl ketone CF3C(O)CHC(OMe)CH2Br gave diene CF3C[OP(O)(OEt)2]CH-C(OMe)CH2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号