首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents the chemistry of ethylenediamines and fluorosilanes. The synthesis of thermally stable monosilyl (1-5)- and bis(fluorosilyl)ethylenediamines (6) is described. Starting with the dilithium salt of ethylenediamine and F2Si(CMe3)2 the five-membered 1,3-diaza-2-silacyclopentane (8) is obtained. The reaction of tetra- and trifluorosilanes with dilithiated bis(silyl)ethylenediamines leads to the formation of 1,3-diaza-2-fluorosilylsilacyclopentanes (9-14). Fluorosilanes substitute 8 in 1 and 3 positions (15-28). A fluorosilyl-bridged five-membered ring (29) is isolated in the reaction of 1-trimethylsilyl-1,3-diaza-2-silacyclopentane, BuLi and MeSiF3. In the synthesis of N-fluorosilyl-1,3-diaza-2-silacyclopentanes constitutional isomers were formed (30-33). Quantum-chemical calculations support the isomerisation mechanism. An iminosilane with an SiN double bond is the intermediate product of the rearrangement process.Crystal structures of 7, 13, 20 and 23 are reported.  相似文献   

2.
Complexes of three related 1-azapentadienyl ligands [N(SiMe2R1)C(But)(CH)3SiMe2R], abbreviated as L (R = But, R= Me), L′ (R = Me = R1), and L″ (R = But = R1), are described. The crystalline compounds Sn(L)2 (1), Sn(L′)2 (2), [Sn(L′)(μ-Cl)]2 (3) and [Sn(L″)(μ-Cl)]2 (4) were prepared from SnCl2 and 2 K(L), 2 K(L′), K(L′) and K(L″), respectively, in thf. Treatment of the appropriate lithium 1-azapentadienyl with Si(Cl)Me3 yielded the yellow crystalline Me3Si(L) (5) and the volatile liquid Me3Si(L′) (6) and Me3Si(L″) (7), each being an N,N,C-trisilyldieneamine. The red, crystalline Fe(L)2 (8) and Co(L′)2 (9) were obtained from thf solutions of FeCl2 with 2 Li(L)(tmeda) and CoCl2 with 2 K(L′), respectively. Each of 1-9 gave satisfactory C, H, N analyses; 6 and 7 (GC-MS) and 1, 2, 8 and 9 (MS) showed molecular cations and appropriate fragments (also 3 and 4). The 1H, 13C and 119Sn NMR (1-4) and IR spectra support the assignment of 1-4 as containing Sn-N(SiMe2R1)-C(But)(CH)3SiMe2R moieties and 5-7 as N(SiMe3)(SiMe2R1)C(But)(CH)3SiMe2R molecules; for 1-4 this is confirmed by their X-ray structures. The magnetic moments for 8 (5.56 μB) and 9 (2.75 μB) are remarkably close to the appropriate Fe and Co complex [M{η3-N(SiMe3)C(But)C(H)SiMe3}2]; hence it is proposed that 8 and 9 have similar metal-centred, centrosymmetric, distorted octahedral structures.  相似文献   

3.
Reduction of isopropyldimethylsilyl-substituted titanocene dichloride [TiCl25-C5Me4SiMe2Pri)2] (1) by excess magnesium in the presence of excess bis(trimethylsilyl)ethyne (btmse) in tetrahydrofuran at 60 °C yielded a mixture of products amongst them only the trinuclear Ti-Mg-Ti hydrido-bridged complex Mg[Ti(μ-H)25-C5Me4SiMe2Pri)]2 (3) was isolated and characterized. The precursor of titanocene, [Ti(η5-C5Me4SiMe2Pri)22-btmse)] (6), was obtained from the identical system which, after initial formation of [TiCl(η5-C5Me4SiMe2Pri)2] (2), reacted at −18 °C overnight and then the solution was rapidly separated from the remaining magnesium. Titanocene [Ti(η5-C5Me4SiMe2Pri)2] (7) was obtained by thermolysis of 6 at 75 °C in vacuum. Crystal structures of 1, 2, 3, 6, and 7 were determined.  相似文献   

4.
Ring-opening halosilation of cyclic ethers with reagents of (Me2N)2SiMe2/4MeI (1a) and (Me2N)2SiMe2/4allylBr (1b) was studied. Tetrahydrofuran and cyclohexene oxide reacted with 1a and 1b to give ring-opened di(haloalkoxy)dimethylsilanes in good yield. With less strained tetrahydropyran, however, only reagent 1a gave the ring-opened product. Reactions of reagents 1a and 1b with propylene oxide also proceeded smoothly, although the regioselectivity was rather low. When similar reactions were carried out with (Me2N)2SiMe2/2MeI (2a) and (Me2N)2SiMe2/2allylBr (2b) in a ratio of cyclic ethers/2a or 2b = 1/1, the corresponding 1:1 adducts were obtained.  相似文献   

5.
Crystalline [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe3)}]2 (5), [Li{N(SiMe2OMe)C(Ph)C(H)(SiMe3)}]2 (6), [C(C6H3Me2-2,5)C(H)(SiMe3)}(TMEDA)](7), [Li{N(SiMe(OMe)2)C(tBu)C(H)(SiMe3)}(THF)]2 (8), Li{N(SiMe(OMe)2)C(Ph)C(H)(SiMe3)}(TMEDA) (9) and [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe2OMe)}]2 (10) were readily obtained at ambient temperature from (i) [Li{CH(SiMe3)(SiMe2OMe)}]8 (1) and an equivalent portion of RCN (R=tBu (5), Ph (6) or 2,5-Me2C6H3 (7)); (ii) [Li{CH(SiMe3)(SiMe(OMe)2)}] (2) and an equivalent portion of tBuCN (8) or PhCN (9); and (iii) [Li{CH(SiMe2OMe)2}] (3) and one equivalent of tBuCN (10). Reactions (i) and (ii) were regiospecific with SiMe3−n(OMe)n>SiMe3 in 1,3-migration from C (in 1 or 2)→N. The 1-azaallyl ligand was bound to the lithium atom as a terminally bound κ1-enamide (8 and 10), a bridging η3-1-azaallyl (6), or a bridging κ1-enamide (5). The stereochemistry about the CC bond was Z for 5, 8 and 10 and E for 7. X-ray data are provided for 5, 6, 7, 8 and 10 and multinuclear NMR spectra data in C6D6 or C6D5CD3 for each of 5-10.  相似文献   

6.
Bis(silylamino)tin dichlorides 1 [X2SnCl2 with X=N(Me3Si)2 (a), N(9-BBN)SiMe3 (b), N(tBu)SiMe3 (c), and N(SiMe2CH2)2 (d)] were prepared from the reaction of two equivalents of the respective lithium amides (Li-a-d) with tin tetrachloride, SnCl4, or from the 1:1 reaction of the respective bis(amino)stannylene with SnCl4. The compounds 1 react with two equivalents of lithium alkynides LiCCR1 to give the di(1-alkynyl)-bis(silylamino)tin compounds X2Sn(CCR1)2, 2 (R1=Me), 3 (R1=tBu), and 4 (R1=SiMe3). Problems were encountered, mainly with LiCCtBu as well as with 1b, since side reactions also led to the formation of 1-alkynyl-bis(silylamino)tin chlorides 5-7 and tri(1-alkynyl)(silylamino)tin compounds 8 and 9. 1,1-Ethylboration of compounds 2-4 led to stannoles 10, 11, and in the case of propynides, also to 1,4-stannabora-2,5-cyclohexadiene derivatives 12. The molecular structure of the stannole 11b (R1=SiMe3) was determined by X-ray analysis. The reaction of 2a and d with triallylborane afforded novel heterocycles, the 1,3-stannabora-2-ethylidene-4-cyclopentenes 14. These reactions proceed via intermolecular 1,1-allylboration, followed by an intramolecular 1,2-allylboration to give 14, and a second intramolecular 1,2-allylboration leads to the bicyclic compounds 15.  相似文献   

7.
The reaction of [1,4-{SiMe3(H)N}2C6Me4] (1) with 2 equivalents of LiBun followed by the addition of SiMe3Cl gave the diamine compound [1,4-{(SiMe3)2N}2C6Me4] (2). [Ta(η5-C5H4SiMe3)Cl4] reacts with 2, in a 2:1 stoichiometric ratio, to initially yield a mixture of the dinuclear, [{Ta(η5-C5H4SiMe3)Cl2}2(μ-1,4-NC6Me4N)] (3), and mononuclear, [Ta(η5-C5H4SiMe3)Cl2{NC6Me4-4-(N(SiMe3)2)}] (4), imido complexes. 3 can be obtained exclusively by submitting the reaction mixture to repeated cycles of evacuation, to remove volatiles, followed by addition of solvent and subsequent heating. The mononuclear imido complex 4 was isolated from the reaction of [Ta(η5-C5H4SiMe3)Cl4] with 2 in a 1:1 stoichiometric ratio. The molecular structure of 4 was determined by X-ray diffraction studies. [TaCl3(CH3CN)2{NC6Me4-4-(N(SiMe3)2)}] (5) has been prepared by the reaction of one molar equivalent of TaCl5 with 2 in a CH3CN/CH2Cl2 solvent mixture. The synthesis of the niobium complexes, [{Nb(η5-C5H4SiMe3)Cl2}2(μ-1,4-NC6Me4N)] (6) and [Nb(η5-C5H4SiMe3)Cl2{NC6Me4-4-(N(SiMe3)2)}] (7), was achieved in a similar manner to their tantalum analogues. The reactivity of 7 towards nucleophilic reagents, namely lithium benzamidinate, lithium (trimethylsilyl)cyclopentadienyl or lithium dimethylamide, has been studied and the following compounds prepared:[Nb(η5-C5H4SiMe3)RCl{NC6Me4-4-(N(SiMe3)2)}] (R = η5-C5H4SiMe3 (8), PhC(NSiMe3)2 (9), NMe2 (10)). In an attempt to form the hetero bimetallic complex, [{Nb(η5-C5H4SiMe3)Cl2}(μ-1,4-NC6Me4N){Ta(η5-C5H4SiMe3)Cl2}] (11), the reaction of 7 with [Ta(η5-C5H4SiMe3)Cl4] has been studied. Analysis of the reaction products showed that 11 may exist in equilibrium with the homo bimetallic complexes 3 and 6.  相似文献   

8.
The synthesis of the bis(η5-indenyl)iron sandwich complexes (η5-1-SiMe3-C9H6)2Fe (3a), (η5-2-SiMe3-C9H6)2Fe (3b), [η5-1,2-(SiMe3)2C9H5]2Fe (4a) and [η5-1,3-(SiMe3)2C9H5]2Fe (4b), by the reaction of the appropriate lithium indenide salts [prepared from 1-SiMe3-C9H7 (2a), 2-SiMe3-C9H7 (2b), 1,2-(SiMe3)2C9H6 (2c) or 1,3-(SiMe3)2C9H6 (2d)] with ferrous chloride (1) in a 2:1 molar ratio is discussed. The solid-state structure of 4b was determined by single-crystal X-ray diffractometry. Complex 4b exists in a gauche conformation, showing that the indenyl ligands are sterically imposed by the bulk of the Me3Si substituents. The average Fe-C distance is 2.091(3) Å. Cyclovoltammetric studies indicate that 3 and 4 are redox-active with one-electron oxidations [E1/2=−270 to −360 mV versus Fc/Fc+, Fc=(η5-C5H5)2Fe].  相似文献   

9.
Metallation of (HMe2Si)(Me3Si)2CH (1) by LiMe gave the organolithium compound Li(THF)2C(SiMe3)2(SiMe2H) (2a), which exists in toluene solution as a mixture of covalent species and ion pairs [Li(THF)4][Li{C(SiMe3)2(SiMe2H)}2] (2b). Treatment of a mixture of 1 and LiMe with KOBut gave KC(SiMe3)2(SiMe2H) (3). This reacted with AlMe2Cl in hexane/THF to give Al(THF)Me2{C(SiMe3)2(Si Me2H)} (4). Treatment of (HMe2Si)(PhMe2Si)2CH (5) with LiMe in Et2O/THF gave the THF adduct [Li(THF)2C(SiMe2Ph)2(SiMe2H)] (6); in the presence of KOBut the solvent-free [K][C(SiMe2Ph)2(SiMe2H)] (7) was obtained. Crystal structure determinations showed that 6 crystallizes in a molecular lattice and 7 in an ionic lattice in which the coordination sphere of the potassium comprises phenyl groups and hydrogen atoms attached to silicon, as well as the central carbon of the bulky carbanion. Compound 7 reacted with an excess of AlMe2Cl to give [AlClMe{C(SiMe2Ph)2(SiMe2H)}]2 (8) and AlMe3. A small amount of the methoxo derivative [Al(OMe)Me{C(SiMe2Ph)2(SiMe2H)}]2 (9) was obtained as a byproduct, presumably after the accidental admission of traces of air. X-ray structural determinations showed that 8 forms halogen-bridged dimers, with the bulky ligands in the anti-configuration, and 9 forms methoxo-bridged species in which the bulky ligands are syn.  相似文献   

10.
Treatment at ambient temperature in diethyl ether of one equivalent of [Li{CH(SiMe3)(SiMe2OMe)}]8 (A) with (i) two equivalents of PhCN, or (ii) successive equivalent portions of ButCN and PhCN gave from (i) (1) and (2) as well as the known lithium 1-azaallyl [Li{N(SiMe2OMe)C(Ph)CH(SiMe3)}]3, and from (ii) (3) The latter was also obtained from the known [Li{N(SiMe2OMe)C(But)CH(SiMe3)}]2 and PhCN under similar conditions. Recrystallisation of 2 from THF/hexane afforded (2). X-ray diffraction data on 2, 2 and 3 are presented; data for 1 were only adequate to confirm its gross tetrameric structure. The particularly novel feature of these transformations of the lithium alkyl A into lithium β-diketiminates 1, 2, 2 or 3 is that while the first 1,3-carbon to nitrogen shift from the α-carbon of A is both silicotropic and regiospecific (in so far as SiMe2OMe > SiMe3 in migratory aptitude), the second migration is indiscriminate: silicotropy yielding 1 or 3 but prototropy giving 2 (or 2). Consistent with these observations, the central carbon atom of the β-diketiminato ligand has significant carbanionic character in 2 or 2, attributed to its stabilisation by the exocyclic Me3Si at C2, whereas in 1 or 3 there is π-delocalisation.  相似文献   

11.
Treatment of 1,2,3-trichloropentamethyltrisilane (1) with H2S/NEt3 results in the formation of a mixture of two isomers of (Me5Si3)2S3 with a bicyclo[3.3.1]nonane (2a) and a bicyclo[3.2.2]nonane (2b) skeleton, while the reaction of 1 with Li2Se yields one product only, (Me5Si3)2Se3 (3a), with a bicyclo[3.3.1]nonane structure. Besides 1H, 13C, 29Si and 77Se NMR spectroscopy 3a has also been characterized by a crystal structure analysis.Compounds Si(SiMe2EMR2E)2 (5a-h: MR2: SiMe2 (5a, c, d), SiPh2 (5b), GeMe2 (5e, f), SnMe2 (5g, h); E=S (5a, b, e, g), Se (5c, f, h), Te (5d)) with a spiro[4.4]nonane skeleton have been obtained in mixture with varying amounts of the corresponding six-membered rings (R2ME)3 by reactions of mixtures of 1,2,2,3-tetrachlorotetramethyltrisilane (4) and diorganodichlorosilanes, Me2GeCl2 or Me2SnCl2, with H2S/NEt3, Li2Se or Li2Te and have been characterized in situ by multinuclear NMR spectroscopy (1H, 13C, 29Si, 119Sn, 77Se, 125Te) and GC-MS.  相似文献   

12.
Treatment of yttrium tris(alkyl)s, Y(CH2SiMe3)3(THF)2, by equimolar H(C5Me4)SiMe3(HCp′) and indene (Ind-H) afforded (η5-Cp′)Y(CH2SiMe3)2(THF) (1) and (η5-Ind)Y(CH2SiMe3)2(THF) (2) via alkane elimination, respectively. Complex 1 reacted with methoxyamino phenols, 4,6-(CH3)2-2-[(MeOCH2CH2)2-NCH2]-C6H2-OH (HL1) and 4,6-(CMe3)2-2-[(MeOCH2CH2)2-NCH2]-C6H2-OH (HL2) gave mixed ligands supported alkyl complexes [(η5-Cp′)(L)]Y(CH2SiMe3) (3: L = L1; 4: L = L2). Whilst, complex 2 was treated with HL2 to yield [(η5-Ind)(L2)]Y(CH2SiMe3) (5). The molecular structures of 3 and 5 were confirmed by X-ray diffraction to be mono(alkyl)s of THF-free, adopting pyramidal and tetragonal-bipyramidal geometry, respectively. Complexes 3 and 5 were high active initiators for the ring-opening polymerization of l-lactide to give isotactic polylactide with high molecular weight and narrow to moderate polydispersity.  相似文献   

13.
Addition of excesses of N-heterocyclic carbenes (NHCs) IEt2Me2, IiPr2Me2 or ICy (IEt2Me2 = 1,3-diethyl-4,5-dimethylimidazol-2-ylidene; IiPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene; ICy = 1,3-dicyclohexylimidazol-2-ylidene) to [HRh(PPh3)4] (1) affords an isomeric mixture of [HRh(NHC)(PPh3)2] (NHC = IEt2Me2 (cis-/trans-2), IiPr2Me2 (cis-/trans-3), ICy (cis-/trans-4) and [HRh(NHC)2(PPh3)] (IEt2Me2(cis-/trans-5), IiPr2Me2 (cis-/trans-6), ICy (cis-/trans-7)). Thermolysis of 1 with the aryl substituted NHC, 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene (IMesH2), affords the bridging hydrido phosphido dimer, [{(PPh3)2Rh}2(μ-H)(μ-PPh2)] (8), which is also the reaction product formed in the absence of carbene. When the rhodium precursor was changed from 1 to [HRh(CO)(PPh3)3] (9) and treated with either IMes (=1,3-dimesitylimidazol-2-ylidene) or ICy, the bis-NHC complexes trans-[HRh(CO)(IMes)2] (10) and trans-[HRh(CO)(ICy)2] (11) were formed. In contrast, the reaction of 9 with IiPr2Me2 gave [HRh(CO)(IiPr2Me2)2] (cis-/trans-12) and the unusual unsymmetrical dimer, [(PPh3)2Rh(μ-CO)2Rh(IiPr2Me2)2] (13). The complexes trans-3, 8, 10 and 13 have been structurally characterised.  相似文献   

14.
Novel half-sandwich [C9H5(SiMe3)2]ZrCl3 (3) and sandwich [C9H5(SiMe3)2](C5Me4R)ZrCl2 (R = CH3 (1), CH2CH2NMe2 (2)) complexes were prepared and characterized. The reduction of 2 by Mg in THF lead to (η5-C9H5(SiMe3)2)[η52(C,N)-C5Me4CH2CH2N(Me)CH2]ZrH (7). The structure of 7 was proved by NMR spectroscopy data. Hydrolysis of 2 resulted in the binuclear complex ([C5Me4CH2CH2NMe2]ZrCl2)2O (6). The crystal structures of 1 and 6 were established by X-ray diffraction analysis.  相似文献   

15.
The reaction of the tetramethylcyclopentadiene-silyl substituted derivative C5Me4(SiMe3)(SiMe2Cl) with MCl4 afforded the trichloro mono-tetramethylcyclopentadienyl complexes M(η5-C5Me4SiMe2Cl)Cl3 [M=Ti (1), Zr (2)] with selective elimination of SiMe3Cl. Compound 1 reacts with deoxygenated water in methylene chloride, with the evolution of HCl, to give the dinuclear titanium compound {Ti[μ-(η5-C5Me4SiMe2O-κO)]Cl2}2 (3), which was converted into the μ-oxo complex {Ti[μ-(η5-C5Me4SiMe2O-κO)]Cl}2(μ-O) (4) by a further hydrolysis reaction which occurred when a solution of 3 in toluene was refluxed for a long period of time in the air. Depending on the size of the alkyl ligand, reactions of the mononuclear compound 1 with an appropriate alkylating reagent rendered the peralkylated Ti(η5-C5Me4SiMe2R)R3 [R=Me (5), CH2Ph (6)] or partially alkylated {Ti[(η5-C5Me4SiMe2(CH2SiMe3)]Cl(CH2SiMe3)2} (7) compounds by a salt metathesis route. Attempts to synthesise a partially methylated or benzylated complex were unsuccessful. Treatment of the dinuclear compound 3 with four equivalents of MgClMe yielded the tetramethyl derivative {Ti[μ-(η5-C5Me4SiMe2O-κO)]Me2}2 (8), while the same reaction carried out with MgCl(CH2Ph) or Mg(CH2Ph)2·2THF gave the chloro-benzyl derivative {Ti[μ-(η5-C5Me4SiMe2O-κO)]Cl(CH2Ph)}2 (9) as an equimolar mixture of diastereomers, regardless of the molar ratio of the alkylating reagent used. All of the new compounds were characterised by elemental analysis and NMR spectroscopy.  相似文献   

16.
Trichloro methyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl3Me] (X = Cl, 2; Me, 3), dichloro dimethyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl2Me2] (X = Cl, 4; Me, 5) and tetramethyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Me4] (X = Me, 6; Cl, 7) niobium complexes were synthesized by treatment of starting tetrachloro derivatives [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl4] (X = Cl, 1a; Me, 1b) with dimethyl zinc or chloro methyl magnesium in different proportions and conditions. A mixture of trichloro methyl and dichloro dimethyl tantalum complexes [Ta{η5-C5H3(SiClMe2)(SiMe3)}Cl4−xMex] (x = 1, 8; 2, 9) in a 2:1 molar ratio was obtained in the reaction of [Ta{η5-C5H3(SiClMe2)(SiMe3)}Cl4] (1c) with 0.5 equivalents of ZnMe2 in toluene at low temperature. 8 could be isolated as single compound when 1 equivalent of 1c was added to the mixtures of 8 and 9, while the reaction of 1c with 1.5 equivalents of dimethyl zinc gave 9 as unitary product. However, [Ta{η5-C5H3(SiMe3)2}Cl4] (1d) reacts with 0.5 equivalents of alkylating reagent giving the trichloro methyl compound [Ta{η5-C5H3(SiMe3)2}Cl3Me] (10) in good yield. On the other hand, [Ta{η5-C5H3(SiMe3)2}Cl4] (1d) reacts with 2 equivalents of MgClMe in hexane at room temperature giving a mixture of dichloro dimethyl and chloro trimethyl complexes[Ta{η5-C5H3(SiMe3)2}Cl4−xMex] (x = 2, 11; 3, 12), while the use of 4 equivalents of MgClMe converts 1c into the tetramethyl derivative [Ta{η5-C5H3(SiClMe2)(SiMe3)}Me4] (13). Finally, a tetramethyl tantalum complex [Ta{η5-C5H3(SiMe3)2}Me4] (14) was prepared by reaction of [Ta{η5-C5H3(SiXMe2)(SiMe3)}Cl4] (X = Cl, 1c; Me, 1d) with 5 (X = Cl) or 4 (X = Me) equivalents of MgClMe in diethyl ether (X = Cl) or hexane (X = Me), respectively, as solvent. All the complexes were studied by IR and NMR spectroscopy and the molecular structure of the complex 11 was determined by X-ray diffraction methods.  相似文献   

17.
A series of titanium complexes bearing a SiMe2-bridged phenoxy-cyclopentadienyl ligand were synthesized and characterized, and their catalytic behavior for copolymerization of ethylene and 1-hexene was investigated. Treatment of dimethylsilyl(2,3,4,5-tetramethylcyclopentadienyl)(3-tert-butyl-5-methyl-2-phenoxy)-titanium dichloride (1) with appropriate nucleophiles afforded dimethoxy complex 2, dimethyl complex 3, and dibenzyl complex 4. Standing a toluene solution of 2 in air afforded a dinuclear μ-oxo complex 5 as a single isomer. 1,3-Diene complexes 6-8 were prepared by reaction of 1 with the corresponding 1,3-dienes in the presence of 2 equiv. of n-BuLi. X-ray analysis of 1,4-diphenyl-1,3-butadiene complex 6 revealed that the diene ligand coordinates to titanium in s-cis fashion with a prone orientation. The newly prepared titanium complexes were applied to copolymerization of ethylene and 1-hexene upon activation with AliBu3 and [C6H5NMe2H][B(C6F5)4]. It was found that the alkyl complexes 3-4 and the diene complexes 6-8 showed higher activities than 1 at elevated temperature.  相似文献   

18.
A series of novel phenoxy-phosphinimine ligands (L): L = 2-(Ph2PNR), 4, 6-(CMe3)2-C6H2OH [2, R = SiMe3; 3, R = Ph] have been prepared in the yield of 65-71%. And bis(phenoxy-phosphinimide) group 4 complexes of the type L2MCl2 [4, M = Ti, R = SiMe3; 5, M = Zr, R = SiMe3; 6, M = Ti, R = Ph; 7, M = Zr, R = Ph] have been synthesized by the reaction of the ligands with TiCl4 and ZrCl4. The structure of complex 7 has been determined by X-ray crystallography. The complexes 4-7 showed inactive to ethylene polymerization in the presence of modified methylaluminoxane (MMAO) and i-Bu3Al/Ph3CB(C6 F5)4. These results should be caused by overdoing the steric congestion around central metal.  相似文献   

19.
Equivalent addition reactions of PhN(Li)SiMe3 to nitriles, RCN (R = dimethylamido, 1-piperidino), generated non-symmetric guanidinato lithium [(Et2O)LiN(SiMe3)C(NMe2)N(Ph)]2 (1) or [(THF)LiN(SiMe3)C(NMe2)N(Ph)]2 (2) and [(Et2O)LiN(SiMe3)C(N(CH2)5)N(Ph)]2 (5) which further reacted with zirconium or hafnium tetrachloride to form Zr and Hf guanidinato complexes with the general formula [PhNC(R)NSiMe3]3MCl (R = dimethylamido, M = Zr (3), Hf (4); R = 1-piperidino, M = Zr (6), Hf (7)). Complexes 1-4, 6 and 7 were well characterized by 1H, 13C NMR and microanalysis, the single crystal X-ray diffraction analysis data for complexes 1, 3, 4 and 7 were also provided. Furthermore, complexes 3, 4, 6 and 7 were found to be active for ethylene polymerization. The influences of cocatalyst, pressure, reaction temperature and Al/M ratio on activity were investigated.  相似文献   

20.
Studies from authors’ group (at the University of Tennessee) on alkylidene complexes and α-H migration in alkyl alkylidyne complexes, leading to unusual tautomerization equilibria between bis-alkylidenes and alkyl alkylidynes, are reviewed. Preparation of silyl alkylidene complexes (Me3ECH2)2Ta(CHEMe3)(SiR3) [R3 = (SiMe3)3, E = C, 3a, Si, 3b; R3 = ButPh2, E = C, 4a, Si, 4b] and the pathway in the formation of 3b are discussed first. Pathways in the formation of archetypical Schrock-type alkyl alkylidenes (Me3ECH2)3TaCHEMe3 (E = C, 5a; Si, 5b), including the work using Ta(CD2CMe3)5 (21-d10) to confirm that it is the precursor to (Me3CCD2)3TaCDCMe3 (5a-d7), are then considered. Tautomerization of silyl alkylidyne (Me3CCH2)2W(CCMe3)(SiButPh2) (6a) with bis-alkylidene (Me3CCH2)W(CHCMe3)2(SiButPh2) (6b) as well as (Me3SiCH2)3W(CSiMe3)(PR3) [R3 = Me3, 7a; Me2Ph, 8a; Me2(CH2)2PMe2 (DMPE-P), 9a] with (Me3SiCH2)2W(CHSiMe3)2(PR3) (R3 = Me3, 7b; Me2Ph, 8b; DMPE-P, 9b) [P refers to a dangling P atom in Me2P(CH2)2PMe2] is covered next. Finally the conversion of the tungsten phosphine tautomerization mixtures to alkyl alkylidene alkylidyne (Me3SiCH2)W(CHSiMe3)(CSiMe3)(PR3)2 [(PR3)2 = (PMe3)2, 10; (PMe2Ph)2, 11; DMPE, 12], including its pathway, is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号